Al Programming

Lecture 1

Markus Böck and Jürgen Cito

Research Unit of Software Engineering

What is Probabilistic

Programming?

What is Probabilistic Programming?

Textbook definition:

Probabilistic programming is a **programming paradigm** in which **probabilistic models** are specified and **inference** for these models is performed automatically.

- > Probabilistic models as programs
- > Automatic posterior inference

(Explained later)

What is Probabilistic Programming?

Where is the AI?

Machine Learning

- Programs define neural networks
- Data: input-output pairs
- Encodes how input maps to output
- Optimise parameters with automatic differentiation to minimise error in mapping
- · Black-box approach

Probabilistic Programming

- Programs define probabilistic models
- · Data: some observed data
- Encodes how unknown variables generated data
- Find distribution over unknown variables with automatic inference that "fits" the data
- Explicit modelling + uncertainty quantification

IV Uncertain knowledge and reasoning

	abilistic Programming											
18.1	Relational Probability Models											
18.2	Open-Universe Probability Models										ï	
18.3	Keeping Track of a Complex World				 							
18.4	Programs as Probability Models				 	i	·				ï	
Sumr	nary				 							
Biblio	ographical and Historical Notes				 					ı		

What is thinking?

How can we describe the intelligent inferences made in everyday human reasoning?

How can we engineer intelligent machines?

Computational tneory of mind

mind = computer

mental representations = computer programs

run(program)

thinking = running a program

What kind of programs can represent thinking?

Why Probabilistic Programming?

- · Probabilistic models allow us to
 - · incorporate prior knowledge
 - · describe dependencies between variables
 - handle uncertainty
- · Probabilistic programs specify probabilistic models
- Inference is concerned about updating our knowledge / belief about unknown or uncertain quantities in the program
- This is achieved by conditioning / constraining the model with observed data

Why Probabilistic Programming?

- Traditionally statisticians developed probabilistic models on paper and implemented inference algorithms
- · Probabilistic programming separates modelling from inference
- Expressivity: Any probabilistic model can be implemented as a probabilistic program
- · General-purpose inference algorithms + inference engineering
- Enable incorporation of programming language and software engineering advances (program analysis, debugging, visualisations,...)

First Look at Probabilistic Programming

$$y = \underbrace{k}_{\text{slope}} \cdot x + \underbrace{d}_{\text{intercept}}$$

Probabilistic Model

```
Posterior Inference
using AdvancedMH
function do_inference()
    x = [-1... -0.5... 0.0... 0.5... 1.0]
    y = [-3.2, -1.8, -0.5, -0.2, 1.5]
    model = linear regression(x, y)
    res = sample(model,
        MH (
            :slope => RandomWalkProposal(Normal(0.0.1)).
            :intercept => RandomWalkProposal(Normal(0,0.2))
        1000
    maximum_a_posteriori_ix = argmax(res[:lp])
    return (
        res[:slope][maximum_a_posteriori_ix],
        res[:intercept][maximum a posteriori ix]
end
```

First Look at Probabilistic Programming

First Look at Probabilistic Programming: Visualisation

Possible worlds according to model

Posterior distribution

Probabilistic Modelling (and Primer in Probability Theory)

Probabilistic Modelling

- The primitives in probabilistic modelling are random variables
- Two types of random variables:
 - · Latent variables ⊖ (Unknown parameter variables)
 - · Observed variables X (data variables)
- By relating the variables with mathematical functions, we can model dependencies between the variables
- The model denotes the joint distribution over latent and observed variables

Random variables

A random variable X can be viewed as a distribution on some sample space Ω – the set of possible outcomes.

Example. Bernoulli distribution parameterised by p, $\Omega = \{0,1\}$:

$$X \sim \text{Bernoulli}(p) \iff \begin{cases} X = 1 & \text{with probability } p \\ X = 0 & \text{with probability } 1 - p \end{cases}$$

Example. Uniform distribution parameterised by a < b, $\Omega = [a, b]$:

$$P(X \in [c,d]) = \frac{\min(b,d) - \max(a,c)}{b-a}$$

Probability mass function and density function

 A discrete variable X is fully described by its probability mass function p_X:

$$P(X \in A) = \sum_{x \in A} p_X(x)$$

 A continuous variable X is fully described by its probability density function f_X:

$$P(X \in A) = \int_A f_X(x) dx$$

Basic properties of random variables

- $P(X \in \Omega) = 1$
- $P(X \in \emptyset) = 0$
- For disjoint outcomes $A \cap B = \emptyset$ we have $P(X \in A \cup B) = P(X \in A) + P(X \in B)$
- Expected value for discrete variables $\mathbb{E}[X] = \sum_{x \in \Omega} x \cdot p_X(x)$
- Expected value for continuous variables $\mathbb{E}[X] = \int_{\Omega} x \cdot f_X(x) dx$

Monte Carlo Simulation

By the **law of large numbers** the arithmetic mean of a sample approaches the expected value and the histogram approaches the density function when increasing the sample size.

First probabilistic model

Scenario: A friend comes to us and wants to play a game of flipping coins. We are suspicious of the coin that the friend brought and we want to infer whether the coin is fair.

Observed variable: results of coin flips head/tail X.

Unknown variable: the probability of flipping heads p.

i-th coin flip: $X_i \sim \text{Bernoulli}(p)$

p ∼ ??

 $p \sim \text{Uniform}(0,1)$ is a choice

First probabilistic program

```
1
      using Turing
 3
      @model function coinflip(y)
 4
          p \sim Uniform(0,1)
 5
          N = length(y)
 6
          for n in 1:N
              y[n] ~ Bernoulli(p)
 8
          end
 9
      end
10
11
      y = [0,1,1,0,1,1,1,0,1,1]
```

Bayesian Inference

Bayesian view of probability

Frequentist probability:

The probability of an event is its relative frequency over time

Bayesian probability:

Probability is a measure of the *degree of belief* of the individual assessing the uncertainty of a particular situation.

Probability represents a state of knowledge.

Bayesian statistics

Bayesian modelling

- Prior $\Theta \sim P(\Theta)$ Encodes our prior information/belief about the latent variables
- Likelihood X ~ P(X|Θ)
 Encodes the way the observations are believed to be generated from the latents
- Joint $(\Theta, X) \sim P(X|\Theta) \cdot P(\Theta)$ Specifies the full probabilistic model
- Posterior Θ ~ P(Θ|X)
 Is the distribution of latent variables given that we have observed the data. It denotes the updated information/belief about the latent variables after the experiment

Coin flip model

• $p \sim \text{Uniform}(0,1)$

• $X_i \sim \text{Bernoulli}(p)$

 How to find posterior?

Posterior Distribution

Bayes' Theorem

Θ ... latent/unknown variables, X ... data/observed variables

$$\underbrace{P(\Theta|X)}_{\text{posterior}} = \underbrace{\frac{P(X|\Theta) \cdot P(\Theta)}{P(X)}}_{\text{evidence}}$$

We can compute likelihood and prior.

The evidence and posterior are in general infeasible.

However, we can compute ratios $P(\Theta = \theta_1|X)/P(\Theta = \theta_2|X)$.

Probabilistic Programming Automates Bayesian Inference

```
1
      using Turing
 3
      @model function coinflip(y)
 4
          p \sim Uniform(0,1)
 5
          N = length(y)
          for n in 1:N
 6
              y[n] ~ Bernoulli(p)
 8
          end
 9
      end
10
11
      y = [0,1,1,0,1,1,1,0,1,1]
12
13
      Turing Random seed! (0)
14
      res = sample(coinflip(y), NUTS(), 1000)
```

First inference result

Belief updating

Probabilistic Programming Languages (PPLs)

Probabilistic Programming Languages

Coin flip model in several PPLs

```
data {
    int N;
    int y[N];
}
parameters {
    real p;
}
model {
    p ~ uniform(0,1);
    for (n in 1:N)
        | y[n] ~ bernoulli(o);
}
```

```
using Gen

@gen function coinflip()

p ~ uniform(0,1)

N = length(y)

for n in 1:N

| {:y ⇒ n} ~ bernoulli(p)

end
end
```

```
import pyro
def coinflip(y):
    p = pyro.sample("p", dist.Uniform(0,1))
    with pyro.plate("flips"):
        pyro.sample("obs", dist.Bernoulli(p), obs=y)

import pymc as pm
    with pm.Model() as model:
        p = pm.Uniform("p", 0, 1)
        pm.Bernoulli("obs", p, observed=y)
```

Why so many Probabilistic Programming Languages?

Balance between expressivity and efficiency.

What class of models should I be able to implement?

How can we optimise inference for this class of models?

Why so many Probabilistic Programming Languages?

Balance between expressivity and efficiency.

- · Stan: only continuous variables, optimised for HMC and ADVI
- · Pyro: optimised for deep probabilistic programming (SVI)
- Pymc: optimised for static-structure finite-dimensional models
- · Gen: facilitates inference programming
- · Turing: facilitates combination of many inference algorithms
- · Beanmachine: takes a declarative approach

Applications

Captcha breaking

Mansinghka, V. K., Kulkarni, T. D., Perov, Y. N., & Tenenbaum, J. (2013). Approximate bayesian image interpretation using generative probabilistic graphics programs. Advances in Neural Information Processing Systems, 26.

Object Tracking

Neiswanger, W., Wood, F., & Xing, E. (2014, April). The dependent Dirichlet process mixture of objects for detection-free tracking and object modeling. In Artificial Intelligence and Statistics (pp. 660-668). PMLR.

Excel Auto-Fill

Gulwani, S. (2011). Automating string processing in spreadsheets using input-output examples. ACM Sigplan Notices, 46(1), 317-330.

Pose Estimation

Cusumano-Towner, M. F. (2020). Gen: a high-level programming platform for probabilistic inference (Doctoral dissertation, Massachusetts Institute of Technology). Kulkarni, T. D., Kohli, P., Tenenbaum, J. B., & Mansinghka, V. (2015). Picture: A probabilistic programming language for scene perception. In Proceedings of the ieee conference on computer vision and pattern recognition (pp. 4390-4399).

(b) For each frame in (a), the inferred 6DoF object poses and object-object contact planes

Time Series

Cusumano-Towner, M. F. (2020). Gen: a high-level programming platform for probabilistic inference (Doctoral dissertation, Massachusetts Institute of Technology).

Hadron Collider

Baydin, A. G., Shao, L., Bhimji, W., Heinrich, L., Meadows, L., Liu, J., ... & Wood, F. (2019, November). Etalumis: Bringing probabilistic programming to scientific simulators at scale. In Proceedings of the international conference for high performance computing, networking, storage and analysis (pp. 1-24).

Nuclear Test Detection

Arora, N. S., Russell, S., & Sudderth, E. (2013). NET-VISA: Network processing vertically integrated seismic analysis. Bulletin of the Seismological Society of America, 103(2A), 709-729.

