Al Programming

Lecture 1

Markus Bock and Jurgen Cito

Research Unit of Software Engineering

What is Probabilistic
Programming?

What is Probabilistic Programming?

Textbook definition:

Probabilistic programming is a programming paradigm in
which probabilistic models are specified and inference for
these models is performed automatically.

> Probabilistic models as programs
> Automatic posterior inference

(Explained later)

What is Probabilistic Programming?

Where is the Al?

Machine Learning

- Programs define neural
networks

- Data: input-output pairs
- Encodes how input maps to
output

- Optimise parameters with
automatic differentiation to
minimise error in mapping

- Black-box approach

Probabilistic Programming is Al!

Probabilistic Programming
- Programs define probabilistic

models

- Data: some observed data

- Encodes how unknown

variables generated data

- Find distribution over

unknown variables with
automatic inference that "fits
the data

”

- Explicit modelling +

uncertainty quantification

Probabilistic Programming is Al!

IV Uncertain knowledge and reasoning

18 Probabilistic Programming 641
18.1 Relational Probability Models 642
182 Open-Universe Probability Models
183 Keeping Track of a Complex World
184 Programs as Probability Models . .
Summary . . . A
Bibliographical and Historical Notes

Stuart

Russell
Peter

Probabilistic Programming is Al!

What is thinking?

How can we describe the

intelligent inferences made in <,‘:{> Hovslll.can we entginee?r
everyday human reasoning? intelligent machines?

Computational theory of mind

run(program)

thinking =

mental representations = .
running a program

computer programs

mind = computer

Probabilistic Programming is Al!

What kind of programs can represent thinking?

Structure Probability

Knowledge Uncertainty

Why Probabilistic Programming?

- Probabilistic models allow us to

- incorporate prior knowledge
- describe dependencies between variables
- handle uncertainty

- Probabilistic programs specify probabilistic models

- Inference is concerned about updating our knowledge / belief
about unknown or uncertain quantities in the program

- This is achieved by conditioning / constraining the model with
observed data

1

Why Probabilistic Programming?

- Traditionally statisticians developed probabilistic models on
paper and implemented inference algorithms

- Probabilistic programming separates modelling from inference

- Expressivity: Any probabilistic model can be implemented as a
probabilistic program

- General-purpose inference algorithms + inference engineering

- Enable incorporation of programming language and software

engineering advances (program analysis, debugging,
visualisations,...)

First Look at Probabilistic Programming

Data
N
of
=
Posterior Inference
2p using AdvancedMH
function do_inference()
x = [-1., -0.5, 0.0, 0.5, 1.0]
e o ‘;(" o o y = [-3.2, -1.8, -0.5, -0.2, 1.5]

model = linear_regression(x, y)
res = sample(model,

y = kR x4+ d MH(
~~ ~~ :slope => RandomWalkProposal(Normal(0,0.1)),
slope intercept rintercept => RandomWalkProposal(Normal(®,0.2))
),
1000
Probabilistic Model)
using Turing maximum_a_posteriori_ix = argmax(res[:1p])
return (

@model function linear_regression(x, y)
prior over latents
slope ~ Normal(@, 3)
intercept ~ Normal(e, 3)

res[:slope] [maximum_a_posteriori_ix],
res[:intercept] [maximum_a_posteriori_ix]

Llikelihood
for i in 1:length(x)

#y = slope x x + intercept

y[il ~ Normal(slope * x[i] + intercept, 1.)
end

First Look at Probabilistic Programming

using Turing
@model function linear_regression(x, y)
prior over latents
slope ~ Normal(@, 3)
intercept ~ Normal(0, 3)

Choice of
Likelihood

likelihood
for i in 1:length(x)
#y = slope x x + intercept
yl[i] ~ Normal(slope * x[i] + intercept, 1.)
end
end

using AdvancedMH
function do_inference()
x = [-1., -0.5, 0.0, 0.5, 1.0]
y = [-3.2, -1.8, -0.5, -0.2, 1.5]
model = linear_regression(x, y) Choice of
res = sample(model, Inference
MH(
:slope => RandomWalkProposal(Normal(@,0.1)),
rintercept => RandomWalkProposal(Normal(e,0.2))
)y
1000
)
maximum_a_posteriori_ix = argmax(res[:1p])
return (
res[:slope] [maximum_a_posteriori_ix],
res[:intercept] [maximum_a_posteriori_ix

‘ Choice of Priors

Choiceof | |
) Visualistation

Feedback Cycle

SE for PPL Research in our
research group

Program Comprehension
(Reasoning about Programs)

Software Evolution
(Reasoning about Change)

Software Visualization
(Reasoning about Large-scale Traces)

Software Testing

(Reasoning about Correctness)

14

First Look at Probabilistic Programming: Visualisation

Possible worlds according to model Posterior distribution

Probabilistic Modelling
(and Primer in Probability Theory)

Probabilistic Modelling

- The primitives in probabilistic modelling are random variables
- Two types of random variables:

- Latent variables © (Unknown parameter variables)
- Observed variables X (data variables)

- By relating the variables with mathematical functions, we can
model dependencies between the variables

- The model denotes the joint distribution over latent and
observed variables

16

Random variables

A random variable X can be viewed as a distribution on some sample
space) - the set of possible outcomes.

Example. Bernoulli distribution parameterised by p, Q = {0,1}:

X =1 with probability p

X ~ Bernoulli(p) <~) -
X =0 with probability 1—p

Example. Uniform distribution parameterised by a < b, Q = [a, b]:

min(b, d) — max(a, ¢)

P(X € [c,d]) = —

Probability mass function and density function

- Adiscrete variable X is fully described by its probability mass
function py:

P(XeA) =) px(x)

X€EA

- A continuous variable X is fully described by its probability

density function fy:
PXeA) = /fx(x)clx
A

Basic properties of random variables

- PXeQ)=1
- PXe®)=0
- For disjoint outcomes AN B = () we have
P(X € AUB) = P(X € A) + P(X € B)
- Expected value for discrete variables E [X] = > o X - Px(X)

- Expected value for continuous variables E [X] = [, X - fx(x)dx

19

Carlo Simulation

By the law of large numbers the arithmetic mean of a sample
approaches the expected value and the histogram approaches the
density function when increasing the sample size.

torch.manual_seed ()

sample = dist.Normal(@,1).sample((10_000,))
plt.hist(sample, bins=50, density=True)

X = torch.linspace(sample.min(),sample.max(), 100)
plt.plot(x, dist.Normal(@,1).log_prob(x).exp())
plt.savefig("lecture_1_figs/normal_hist.pdf") 02
sample.mean()

v 0.1s

tensor(-0.0107)

20

First probabilistic model

Scenario: A friend comes to us and wants to play a game of flipping
coins. We are suspicious of the coin that the friend brought and we
want to infer whether the coin is fair.

Observed variable: results of coin flips head/tail X.
Unknown variable: the probability of flipping heads p.
i-th coin flip: X; ~ Bernoulli(p)

p~ 77

0 1 0.0 0.5 1.0 0.0

p ~ Uniform(0,1) is a choice

21

First probabilistic program

© 0O NO U & WN B

R
S

using Turing

@model function coinflip(y)
p ~ Uniform(@,1)
N = length(y)
for n in 1:N
y[nl ~ Bernoulli(p)
end
end

y = lo,1,1,0,1,1,1,0,1,1]

22

Bayesian Inference

Bayesian view of probability

Frequentist probability:

The probability of an event is its relative frequency over time

Bayesian probability:

Probability is a measure of the degree of belief of the individual
assessing the uncertainty of a particular situation.

Probability represents a state of knowledge.

23

Bayesian statistics

Bayesian modelling Coin flip model

- Prior © ~ P(©) - p ~ Uniform(0, 1)
Encodes our prior information/belief
about the latent variables

- Likelihood X ~ P(X|©) - Xj ~ Bernoulli(p)
Encodes the way the observations are
believed to be generated from the
latents

- Joint (©,X) ~ P(X|®) - P(©)
Specifies the full probabilistic model

- Posterior © ~ P(©|X) * How to find
Is the distribution of latent variables posterior?
given that we have observed the data. It
denotes the updated information/belief
about the latent variables after the
experiment -

Posterior Distribution

Bayes’ Theorem
O ... latent/unknown variables, X ... data/observed variables

likelihood prior
P(X|©) -P(©)
pofx) = SXI9)-P(O)

o7 P(X)
posterior =
evidence

We can compute likelihood and prior.
The evidence and posterior are in general infeasible.

However, we can compute ratios P(© = 641|X)/P(© = 6,|X).

25

Probabilistic Programming Automates Bayesian Inference

O 0O NO UL B~ WN B

e el el
A WNPRPROS

using Turing

@model function coinflip(y)
p ~ Uniform(@,1)
N = length(y)
for n in 1:N
y[n] ~ Bernoulli(p)
end
end

y = [0,1,1,0,1,1,1,0,1,1]
Turing.Random.seed! (0)

res = sample(coinflip(y), NUTS(), 1000)

26

First inference result

Summary Statistics

parameters
Symbol

p

Quantiles
parameters
Symbol

p

°

0.5

M\’ | ﬂl kr‘r ‘\ I

mean
Float64

0.6632
2.5%
Float64

0.3878

P

std
Float64

0.1296
25.0%
Float64

0.5817

iy

mcse
Float64

0.0069
50.0%
Float64

0.6691

ess_bulk
Float64

351.9368
75.0%
Float64

0.7590

Density

ess_tail rhat ess_per_sec
Float64 Float64 Float64
604.9492 1.0033 4399.2097
97.5%
Float64
0.8974
p ——
/ N

600

800

1000

1200

1400

27

Belief updating

Prior flip.1=0 flip.2 =1 flip.3 =1 flip.4 =0 flip_5 = 1
N\
0.0 0.50 1.0 0.0 0.33 1.0 0.0 0.50 1.0 0.0 0.60 1.0 0.0 0.50 1.0 0.0 0.57 1.0
0.0 0.50 1.0 0.0 0.40 1.0 0.0 0.50 1.0 0.0 0.57 1.0 0.0 0.50 1.0 0.0 0.56 1.0
flip_6 =1 flip.7 =1 flip 8 =0 flip9 =1 flip 10 = 1 : After 70 heads
0.0 0.62 1.0 0.0 0.67 1.0 0.0 0.60 1.0 0.0 0.64 1.0 0.0 0.67 1.0 :O 0 0.70 1.0
0.0 0.60 1.0 0.0 0.64 1.0 0.0 0.58 1.0 0.0 0.62 1.0 0.0 0.64 1.0 :U 0 0.68 1.0

28

Probabilistic Programming
Languages (PPLs)

Probabilistic Programming Languages

Anglican
Turlng ° j l PRISM
I n fe r. NE Tbayesloop
BeanmachineIsar o -~
Lea Church Birch o
Edward FACTORIE 0y v oo Pyr
BayesDB Tuffy greta prompT

ProbLog PSIS | NumPyro
) Figaro

BLOG Saul Low- level Chlmple

Gen WebPPL Venture RankPL BUGS

1 = CuPPL
Troll B sAT dimple
PSQL First-order
Rainier PMTK Gamble
Probabilistic-C TensorFlow Probability

PWhile Alchemy Picture

P yMC pomegranate

Blang

ProbCog

29

Coin flip model in several PPLs

import pyro
def coinflip(y):

dataiit N; p = pyro.sample("p", dist.Uniform(@,1))
int yINI; with pyro.plate("flips"):
} pyro.sample("obs", dist.Bernoulli(p), obs=y)
parameters {
real p; import pymc as pm
3} with pm.Model() as model:
model { p = pm.Uniform("p", @, 1)
p ~ uniform(0,1); pm.Bernoulli("obs", p, observed=y)

for (n in 1:N)
y[nl ~ bernoulli(o);

using Gen
@gen function coinflip()
p ~ uniform(@,1)
N = length(y)
for n in 1:N for n in 1:N return dist.Uniform(o,1)
{:y => n} ~ bernoulli(p) yInl ~ Bernoulli(p) @bm. random_variable
end end def y(i: int):
end end return dist.Bernoulli(p())

using Turing

@model function coinflip(y)
p ~ Uniform(0,1)
N = length(y)

import beanmachine as bm
@bm. random_variable
def p():

30

Why so many Probabilistic Programming Languages?

Balance between expressivity and efficiency.
What class of models should | be able to implement?

How can we optimise inference for this class of models?

31

Why so many Probabilistic Programming Languages?

Balance between expressivity and efficiency.

- Stan: only continuous variables, optimised for HMC and ADVI

- Pyro: optimised for deep probabilistic programming (SVI)

- Pymc: optimised for static-structure finite-dimensional models
- Gen: facilitates inference programming

- Turing: facilitates combination of many inference algorithms

- Beanmachine: takes a declarative approach

32

Applications

Captcha breaking

Mansinghka, V. K, Kulkarni, T. D., Perov, Y. N., & Tenenbaum, J. (2013).
Approximate bayesian image interpretation using generative
probabilistic graphics programs. Advances in Neural Information
Processing Systems, 26.

Input Image Intermediate Iterations Final Inferred Image
D 2 ey
re | rs
)
EEEa K
\4 h

drmiv|m hvd flohhwd

c

w“Ql‘

3~

33

Object Tracking

Neiswanger, W.,, Wood, F, & Xing, E. (2014, April). The dependent
Dirichlet process mixture of objects for detection-free tracking and
object modeling. In Artificial Intelligence and Statistics (pp. 660-668).
PMLR.

() |- e L — ©

F BB BB BB S

“Time step t

34

Excel Auto-Fill

Gulwani, S. (2011). Automating string processing in spreadsheets
using input-output examples. ACM Sigplan Notices, 46(1), 317-330.

@ Excel Datei Bearb

© Automatisches Spe

Start Einfligen Zeichne

: fx 0
A B
1 01.01.23
2 15.01.23
3 29.01.23.
4
12.02.23
5

Pose Estimation

Cusumano-Towner, M. F. (2020). Gen: a high-level programming
platform for probabilistic inference (Doctoral dissertation,
Massachusetts Institute of Technology). Kulkarni, T. D., Kohli, P,
Tenenbaum, J. B,, & Mansinghka, V. (2015). Picture: A probabilistic
programming language for scene perception. In Proceedings of the
ieee conference on computer vision and pattern recognition (pp.
4390-4399).

voive MO v voktve M voave M

(b) For each frame in (a), the inferred 6DoF object poses and object-object contact planes

36

Cusumano-Towner, M. F. (2020). Gen: a high-level programming
platform for probabilistic inference (Doctoral dissertation,
Massachusetts Institute of Technology).

Airline Passenger Data

500
-<+- Observed Data
100 A Predictions
+ Held-out Data 1
i

300 4 ' & . o?
00 4 u&f?‘"{ h‘

Passenger Volume
no

00 L : —r . ’ ’
1948 1950 1952 1954 1956 1958 1960
Year

Probabilistic Programming Neural Network Learning

+ Observed Data s+ Observed Data
+ Future Data + Future Data
~— Predictions —— Predictions
N b L
AhhOte B 2
A B H
{ 3

i

37

Baydin, A. G., Shao, L., Bhimji, W., Heinrich, L., Meadows, L., Liu, /., ... &
Wood, F. (2019, November). Etalumis: Bringing probabilistic
programming to scientific simulators at scale. In Proceedings of the
international conference for high performance computing,
networking, storage and analysis (pp. 1-24).

Tpx <oy pz
10 os XL el
0s L
02
o6 04
04 0 o1
02
00 oo 00
ENC =2 o s i3 as 45 a5 4
Momentum [GeV/c] Momentum [GeV/c] Momentum [GeV/c]
FSP Energy 1 Decay Channel
10
01s i
oaf i
!
a0 os] |t
oaf |t
oos !
02 H
!
000 o0
T T 7 3 4 I R)
Energy (Gev]
FSP Energy 2 MET
0.15 o
~ 7 20
3
EE)
4 010 15
520 10
H 00s
Y os
o 000 o0
R 0 2 30 40 I
F5P 1 Energy [Gev] Eneray (Gev) Missing ET

38

Nuclear Test Detection

Arora, N. S, Russell, S., & Sudderth, E. (2013). NET-VISA: Network
processing vertically integrated seismic analysis. Bulletin of the
Seismological Society of America, 103(2A), 709-729.

39

	What is Probabilistic Programming?
	Probabilistic Modelling (and Primer in Probability Theory)
	Bayesian Inference
	Probabilistic Programming Languages (PPLs)
	Applications

