Probabilistic Programming and Al: Lecture 5

Advanced Topics in Probabilistic Programming

Markus Bock and Jurgen Cito

Research Unit of Software Engineering

Table of contents

1. Custom Inference
2. Data-Driven Inference

3. Probabilistic Programs as Proposals

4. Deep Probabilistic Programming

- Probabilistic programs can describe any probabilistic model
- Underlying models can be difficult to describe mathematically

- Unbounded number of random variables
- Stochastic branching
- Dynamic distributions allowed (non-static support)

- Efficient general-purpose inference is hard

- General-purpose inference algorithms exist
- importance sampling
- single-site MH
- Can be inefficient
- Imposing restrictions on the probabilistic program allows us to
optimise inference
- fixed, finite number of continuous variables
- gradient-based inference: HMC, ADVI
- Still work for a large class of models

- We can optimise inference for individual models
- Custom Inference: manually exploit structure of model
- Data-Driven Inference: use observed data to improve proposals

- Probabilistic Programs as Proposals: convenient way to
customise inference

- Deep Probabilistic Programming: learning proposals (and
models) from data

Custom Inference

Infinite Mixture Models: Where single-site MH fails

- Number of clusters:
K ~ Poisson(5)
- Probability of being in cluster k, pg:
p ~ Dirichlet(1/K)
- Cluster centers, kR =0,...,K:
i ~ Uniform(-3,3),
1, ~ Uniform(-3,3)
- Cluster spread, k=10,...,K:
o? ~ InverseGamma(1,1)

- Unbounded number of
random variables

- Discrete variables
= no HMC / ADVI
- High-dimensional
— nolS /LW
- Cluster membership, i=1,...,N: * but single-site MH is
z; ~ Categorical(p) applicable in principle

- Observed data,, i=1,...,N:
Xi ~ Normal(gy,, 07,)

2.0 1

° °
oo 0oy,
3] ° ° Q; ®e
1.0 ‘.' " 3 “ °
Y '..) X]
0.5 A ° -zl ..: ..
e ° ’e .'.
007 . . ° %y .
. °
=% ’ .."‘.o.. o® % -':':.-':’:': .
g ° e 4 °
01 ° ...o e, f:'g ‘.}o.
° o o
-1.5 1 . .~. .'.O':.0# . PP
-2.09 o o o
-2 -1 6 1 2

Ground truth

Single-site update

Updating the number of clusters K

- Adding clusters is easy: sample
new cluster center and deviation

- How can we remove the orange
cluster?

- Change K from 4 to 3 (single-site)

’ ‘w - Changes dimension of p (so

B g”» current p has 0 log-prob?)
-2 - Fix: sample py individually
S R - All memberships z; = 4 have
log-prob 0.

In theory, this update can happen, but is very low probability. All
7 = 4 have to be changed before setting K = 3.

Designing a Custom Inference Algorithm

In each iteration, we pick one type of move at random

1. Updating cluster centers uy and deviations oy,
Reweighting clusters — updating p

Updating the memberships z

Merging two randomly selected clusters.

& N

Splitting one random cluster

Designing a Custom Inference Algorithm - 1

Updating cluster centers p, and deviations oy,
We can simply do random walk Metropolis Hastings updates.

Slightly perturbing the current values.

Designing a Custom Inference Algorithm - 2

Reweighting clusters — updating p
Let n, be the number of data points allocated to cluster k.
We expect that

Nk

W’N"pk.

We can update p reflecting this relationship:

p ~ Dirichlet(n., ..., nk)

1

Designing a Custom Inference Algorithm - 3

Updating the memberships z

e 1 Wh
We := N (Xj; g, o) o< exp (M(Xi —)" (X — Nf?)> R

zj ~ Categorical(wy, ..., W)

Designing a Custom Inference Algorithm - 4

Merging two randomly selected clusters

Choose two "neighbouring” clusters with weights p;, means p; and
deviations ¢; at random, such that

1 — p2ll2 < llpr — pll2, forj=1,...,K

Match moments for isotropic Normals of dimension d:

P« = pi1+p2 (1)
Pstbs = Papa + P22 (2)
P (, pis + do?) P1(p 1+ do) + pa(pg p2 +do3) (3)

and update memberships z;.

Designing a Custom Inference Algorithm - 4

Merging two randomly selected clusters

Merge red and green cluster to orange.

14

Designing a Custom Inference Algorithm - 5

Splitting one random cluster
Select cluster at random with weight p,, mean . and deviation o..

Draw auxiliary variables:
uy ~ Beta(2,2), u, ~ Dirichlet(2,...,2) € RY, u; ~ Beta(1,1)

Wy = Wylh, (4)
wo = w.(1—u) (5)
W
= e — U0y de (6)
W-
Lo = s+ Usoeq[d— (7)
wr
W
o1 = U3(1—U;U2)Uif (8)
W+
T 2 W
o, = (1—U3)(1—U2 Uz)J*f (9)
Wr

These variables satisfy equations (1) - (3). Thus, merging the two
randomly created clusters results in the original cluster (p., fix, o).

Designing a Custom Inference Algorithm - Results

(b) Two Samples from the Inferred Posterior:
Richardson & Green’s Data-driven MCMC (top),
BLOG Ancestral Sampling (bottom)

16

Designing a Custom Inference Algorithm

- In the proposal, we make use of auxiliary random variables

- This makes computing the acceptance probability non-trivial
- Itis key to be able to "undo” moves, e.g. merge - join

- This is called reversible-jump MCMC

- It is a special case of involutive MCMC

- More details in: On Bayesian Analysis of Mixtures with an
Unknown Number of Components (with discussion)
https://academic.oup.com/jrsssb/article-pdf/59/
4/731/49588858/jrsssb_59_4_731.pdf

https://academic.oup.com/jrsssb/article-pdf/59/4/731/49588858/jrsssb_59_4_731.pdf
https://academic.oup.com/jrsssb/article-pdf/59/4/731/49588858/jrsssb_59_4_731.pdf

Data-Driven Inference

Data-Driven Proposals = Biased Inference?

- It is often good practice to chose uninformative priors, i.e. we do
not prefer any values for the latent variables a-priori

- However, with the proposals, we want to stir inference towards
high probability areas of the posterior

- We can use the observed data to construct proposals as close
to the posterior as possible

Data-Driven Proposals

However, to ensure convergence to the true posterior proposals have
to satisfy following properties:

- Unconditional proposals Q(x): if a state x is possible according
to the model P(x) > 0, then it has to be possible according to
the proposal Q(x) > 0

- Conditional proposals Q(x’|x): any state should be reachable
from any other state in any number of steps less or equal to a
fixed number N.

19

Data-Driven Inference

Common strategy:

One way of constructing data-driven proposals is to use a heuristic
to estimate the mode of the target distribution (or one of its
conditional distributions) and to sample values near the estimate of
the mode, but with noise added.

With enough data:
mode of posterior ~ maximum likelihood estimator

20

Data-Driven Inference

Linear regression:
propose from prior

1.0
154
104 081
5 0.6 1
s
0 Y =)
Y 0.4
&
—54
0.2
-10
0.0 T
-1 0 1 -2 0 2 4

21

Data-Driven Inference

Linear regression: propose from Normals centered at ordinary least
squares (OLS) solution

1.09

0.8

,/ 0.6

o 7
e =
i > 0.4
-
L
—4 0.2
—61 . . . 0.0

22

Data-Driven Inference

GMM:

Sample number of clusters K ~ Poisson(5)

Run k-means clustering and perturb the result.

Different cluster analysis results on "mouse" data set:

Original Data k-Means Clustering EM Clustering
0
Y " X
oy 2% o8
F e HRY
Nt ?%%E o@gzg;j: F 07
B oo Sy 06
8 pfecd S
2 %0%9: e 0s
SR :;%"oo;o
e, € 0% o4
02
01 01

0 01 02 03 04 05 06 07 08 09 1

01 02 03 04 05 06 07 08 09 1

01 02 03 04 05 06 0.7 08 09 1

23

Probabilistic Programs as
Proposals

Probabilistic Programs as Proposals

As proposals get more complex it is more convenient to write them
programmatically.

Key idea: We can write a probabilistic program and use it for
generating proposal in the inference for another program.

These programs are called guides.

Gen (and Pyro): programmable inference

24

Example:

Polynomial Regression in Gen.jl

. 10
B
4
s
3
o
.
, 6
1 B .
o . .
. 2
,1 .
. .
S B o
<
. = = .
“Is —1lo —05 00 05 10 15 s o <05 oo o5 10 15 s —lo —05 oo o5 10 15
- 1500
N
1000
3
4
500
o 2
0 e oo o
o 1
9 —500
3
1Y
it -1000
Y -
N -
o . 1500
“Is -lo -05 0o 05 10 15 s 1o <05 oo o5 10 1s s -lo -05 0o o5 10 1s

25

Example: Polynomial Regression in Gen.jl

@gen function poly_model(x_coordinates)
degree ~ uniform_discrete(0,4)
var ~ inv_gamma(1,1)
coefficients = [({(:c,i)} ~ normal(0,1)) for i in 0:degree]
for i=1:length(x_coordinates)

x = x_coordinates[i]
mu = 'coefficients = x."(0:degree)
{(:y,i)} ~ normal(mu, sqrt(var))
end
end

@gen function poly_proposal_prior(x_coordinates)

degree ~ uniform_discrete(0,4)

var ~ inv_gamma(1,1)

coefficients = [({(:c,i)} ~ normal(0,1)) for i in 0:degree]
end

26

Example: Polynomial Regression in Gen.jl

Idea: Iteratively sampling coefficients.

We have currently polynomial of 2nd degree.

current: a + bx + cx? fit dx3 + ex* to residuals
101
61
8
°
44 6
[]
° 4
2]
[]
2
Q
0 o °
® °
24 °® —24 °
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

Sample value centered around OLS solution for d.

27

Example: Polynomial Regression in Gen.jl

@gen function poly_proposal_data_driven(x_coords, y_coords)
noise for each coefficient
scales = [0.395, 0.242, 0.088, 0.020, 0.007]
n = length(x_coords)
degree ~ uniform_discrete(0,4)
coeffs = [NaN for i in 0:degree]
predicted = zeros(n)

for i in 0:degree
residuals = y_coords .- predicted # elementwise subtraction
fit a polynomial to residuals with coefficients 0..i-1 fixed to zero

est_coeffs = least_squares(x_coords, residuals, degree, min_degree=i)
coeffs[i+1] = ({(:c,i)} ~ cauchy(est_coeffs[1], scales[i+1]))
= [dot(coeffs, x."(0:i)) for x in x_coords]

predicted
end
use variance of residuals to get estimate for model noise
residuals = y_coords .- predicted

var ~ inv_gamma(1 + n/2, 1 + 0.5 % dot(residuals, residuals))
end

28

Example: Polynomial Regression in Gen.jl

Estimate for the probability of degree = 3

n =102 n=10° n=10* n=10°

L | had [il [A

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

(a) Estimates from self-normalized importance sampling with a prior proposal.

n =102 n =103 n = 10% n = 10°

A [[.

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

(b) Estimates from self-normalized importance sampling with a data-driven proposal.

29

Deep Probabilistic Programming

Deep Probabilistic Programming: Motivation

- Non-programmability: For many data modalities that are
commonly considered in ML and Al, including images and
natural language, it is near-impossible to fully specify a
probabilistic program that defines a sufficiently realistic
distribution over data.

- Scalability: Models in ML and Al are routinely trained on very
large datasets. Most inference methods that we have
considered so far do not scale to such large datasets without
additional modifications.

- These challenges can be addressed by combining inference
methods from probabilistic programming with differentiable
programming techniques from deep learning research.

30

Deep Probabilistic Programming: Non-programmability

Non-programmability:

How to implement a probabilistic program that generates 28 x28 px
images of hand-written digits?

Sample digit ~ DiscreteUniform(0, 9),

and then ... ??

31

Deep Probabilistic Programming: Neural Networks

- Neural networks are universal function approximators

- Use neural network 7, with parameters X in the program to
flexibly model relationship between latents and observes

- latent: digit; observed: image
- imagelx,y] ~ Bernoulli(nx(digit)[x, y])
- probability of pixel being white = gray scale value

- Learn X\ to fit our data set

32

Deep Probabilistic Programming: Neural Networks

How to learn \ (model parameters)?

- Fully Bayesian treatment: \ are additional latent variables, set
prior P(\) and take maximum a-posteriori (MAP)
argmax, P(A|xq,...,Xp)?
- — Bayesian deep learning
- Challenges: very high-dimensional posterior + choice of prior
- Instead maximise marginal likelihood of training data
argmaxy P(X1, ..., Xn|A)
- — Maximum likelihood estimation (MLE)
< P(AXa, .o Xn) o< P(Xq, ..o Xn | A)P(N)
- When there is a lot of data, the likelihood P(X|\) numerically
dominates the prior P(\) so effectively the prior can be ignored
(formally: Bernstein von Mises theorem)

- MLE ~ MAP if we have a lot of data

33

Deep Probabilistic Programming: MLE

Find MLE of X\ with stochastic gradient ascent
V)\ |og P(X‘)\) =]ngp(_‘)(,)\) [V,\ |0g P(X7 (9|/\)]
because

Egp1x,2) [V log P(X, 0| \)]
= Eop(x,n) [Valog P(X|A) + Vi log P(0]X,)]
= Valog P(X|A) + Egvp(jx,2) [V log P(O]X,)]

=0

How to compute Egp(.x,a) [V log P(X, 0| \)]?

Bayesian inference!

34

Deep Probabilistic Programming

- We do not only want to learn the model parameters

- We also want to perform posterior inference over latent
variables

- E.g. what is the digit of an unlabeled image?
- How to combine model learning and posterior inference?

35

Deep Probabilistic Programming

Variational guide programs

- If we cannot fully specify the model, then we probably also want
to specify the proposals with neural networks 7.

- E.g. mapping images to their digit.

- Thus, we write a variational proposal distribution as a guide
program.

- As in ADVI, we can differentiate through the neural networks and
maximise the ELBO to minimise the KL-divergence.

36

Deep Probabilistic Programming

Scalability: Amortised Inference
Instead of learning N variational distributions separately like in ADVI
with mean-field approximation,

Q(0ilxi, #) = Q(0i]9i),

we use the neural network n, to predict the variational parameters
for each observation x;,

Q8i[xi, #) = Q(8i|me(xi))-

E.g. for N images of hand-written digits x;:

Learning N separate distributions over the true latent digits 6; of x;
versus learning to predict the digit of each image n4(x;) and then
build a distribution around it.

37

Deep Probabilistic Programming

Combining model learning and posterior inference
- Maximising the ELBO w.r.t to ¢ and \

ELBOX: A,6) = Egnais) o P8, XIA) — log Q(6]6)
= logP(X|A) — Di(Q(©]4) || P(OIX, 1))

- Justification: assume we have variational distribution with an
"infinity capacity” (it can fit every distribution perfectly), then

min Dt (Q(O16) || P(BIX, \)) = 0 and max ELBO(X; A, ¢) = log P(X|)

- Thus, maximising the ELBO w.rt to ¢ and X is equivalent to
maximum likelihood estimation,

DR ELBO(X; \, @) = max log P(X|)\)

38

Deep Probabilistic Programming

Maximising the ELBO w.r.t to ¢ and \

max m;x ELBO(X; N\, ¢) = max log P(X|\)

- In practice, we will not have an infinite capacity variational
distribution, and we will typically not fully solve the inner
optimization problem for ¢ at every gradient step for A.

- We take gradient steps in both X and ¢ space simultaneously so
that the guide and model play chase, with the guide tracking a
moving posterior log P(©|X, \).

- There will be a difference between maximizing the ELBO and
maximizing the marginal likelihood. This difference manifests
itself as an extra term in the gradient

VAELBO(X; A, ¢) = V. log P(X|\) + VD (Q(©]9) || P(OIX, A))

39

Deep Probabilistic Programming

Maximising the ELBO w.r.t to ¢ and A
VAELBO(X; A, ¢) = Vxlog P(X|A) + VaDi (Q(©]9) | P(OIX,)

In this gradient, the second term prevents gradient updates to A
from making changes to the model that strongly increase the KL
relative to the variational approximation. This is sometimes argued
to be beneficial, in the sense that it acts as a form of regularization
that prevents overfitting in the generative model, or in the sense
that it stabilizes the optimizer. However, it can also lead to
approximation errors in the learned generative model.

Optimizing the ELBO will balance maximizing log P(X|\) against
minimizing D (Q(©|¢) || P(©|X, A)). This can be seen as a bias
towards learned P(©|X, \) that are "compatible” with performing
variational inference in using the variational family Q(©|¢).

40

Deep Probabilistic Programming

Maximising the ELBO w.r.t to ¢ and) - Computing Gradients

As
ELBO(X; A, ¢) = Eg~q(.|¢) [log P(X, 0|A) — log Q(0]¢)]

is an expectation w.rt to Q(.|¢), we can pull V, inside the
expectation if we can apply the reparametrisation trick as in ADVI.
This allows us to use unbiased lower-variance Monte-Carlo estimates
for the gradient.

V., can always be pulled inside the expectation.

41

Deep Probabilistic Programming - Example

Semi-Supervised Variational Auto-Encoders (SSVAE) in Pyro

X > —> > > <
I { | it { | |
Input Encoder Space Decoder Output

Objective: Learn generative distribution of hand-written digits and
be able to predict the digit of unlabeled images.

Only a fraction of the images are assumed to be labeled.

42

Deep Probabilistic Programming - SSVAE

observation likelihood p(x|z)
class Decoder(nn.Module):
def __init__(self, input_dim, output_dim, hidden_dims):
super (). __init__()
self.fc1 = nn.Llinear(input_dim, hidden_dims[0])
self.fc2 = nn.Linear(hidden_dims[0], hidden_dims[1])
self.fc3 = nn.Linear(hidden_dims[1], output_dim)

self.softplus = nn.Softplus()

def forward(self, z):
z = self.softplus(self.fc1(z))
z = self.softplus(self.fc2(z))
loc_img = torch.sigmoid(self.fc3(z))
return loc_img # probabilities of pixels being white

43

Deep Probabilistic Programming - SSVAE

def model(self, x, y=None):
pyro.module(”decoder”, self.decoder)
with pyro.plate(”data”, x.shapel[0]):

setup hyperparameters for prior p(z)

z_loc = torch.zeros(x.shape[0], self.z_dim)

z_scale = torch.ones(x.shapel[0], self.z_dim)

sample from prior p(z)

z = pyro.sample(”latent”, dist.Normal(z_loc, z_scale).to_event(1))

setup hyperparameters for prior p(y)

alpha = torch.full(x.shape[0], 1/self.output_size)

sample from prior p(y)

y = pyro.sample("y”, dist.OneHotCategorical(alpha), obs=y)

sample from p(xly,z)

loc_img = self.decoder.forward(self.concat.forward(z, vy))

sample image

pyro.sample(
"obs”,
dist.Bernoulli(loc_img, validate_args=False).to_event(1),
obs=x,

)

return loc_img

I

Deep Probabilistic Programming - SSVAE

diagonal gaussian distribution qg(zlx,y)
class EncoderZ(nn.Module):
def __init__(self, input_dim, output_dim, hidden_dims):

super (). __init__()

self.input_dim = input_dim

self.fc1 = nn.Linear(input_dim, hidden_dims[1])
self.fc2 = nn.Linear(hidden_dims[1], hidden_dims[0])

two heads for mean and std
self.fc31 = nn.Linear(hidden_dims[0], output_dim)
self.fc32 = nn.Linear(hidden_dims[0], output_dim)

self.softplus = nn.Softplus()

def forward(self, x):
x = self.softplus(self.fc1(x))
x = self.softplus(self.fc2(x))

z_loc = self.fc31(x)
z_scale = torch.exp(self.fc32(x))
return z_loc, z_scale

45

Deep Probabilistic Programming - SSVAE

diagonal gaussian distribution q(ylx)
class EncoderY(nn.Module):
def __init__(self, input_dim, output_dim, hidden_dims):

super (). __init__()
self.input_dim = input_dim

self.fc1 = nn.Llinear(input_dim, hidden_dims[1])
self.fc2 = nn.Linear(hidden_dims[1], hidden_dims[0])
self.fc3 = nn.Linear(hidden_dims[0], output_dim)

self.softplus = nn.Softplus()
self.softmax = nn.Softmax(dim=1)

def forward(self,
x = self.softp

X
l
x = self.softpl

):
us(self.fc1(x))
us(self.fc2(x))

y = self.softmax(self.fc3(x)) # returns class probabilities
return vy

46

Deep Probabilistic Programming - SSVAE

define the guide (variational distribution) q(zlx,y) qg(ylx)
def guide(self, x, y=None):
pyro.module(”encoder_z", self.encoder_z)
pyro.module(”"encoder_y”, self.encoder_y)
with pyro.plate(”data”, x.shapel[0]):
if y is None:
use the encoder to get the parameters used to define q(ylx)
alpha = self.encoder_y.forward(x)
sample q(ylx)
y = pyro.sample(”y”, dist.OneHotCategorical(alpha))

amortised inference
use the encoder to get the parameters used to define q(zlx,y)

z_loc, z_scale = self.encoder_z.forward(self.concat.forward(x, y))

sample q(zlx,y)
z = pyro.sample(”latent”, dist.Normal(z_loc, z_scale).to_event(1))

47

Deep Probabilistic Programming - SSVAE

auxiliary model
def model_classify(self, x, y):
pyro.module(”encoder_y”, self.encoder_y)
assert y is not None
with pyro.plate(”"data”, x.shapel[0]):
alpha = self.encoder_y.forward(x)
with pyro.poutine.scale(scale=self.aux_loss_multiplier)
pyro.sample(”y_aux”, dist.OneHotCategorical(alpha), obs=y)

def guide_classify(self, x, y=None):
pass

48

Deep Probabilistic Programming - SSVAE

for epoch in range(1, epochs+1):
perform svi steps on train loader
epoch_loss = 0.0
batches are not shuffled
for i, (x, y) in enumerate(loaders['train’]):
x = x.reshape(-1, ssvae.input_size).to(device)

alternate between supervised and unsupervised batches
if nth_supervised and (i % nth_supervised == 0):
y = F.one_hot(y, ssvae.output_size).to(device)

perform step on auxiliary model
if aux_loss:
epoch_loss += svi_aux.step(x, vy)
else:
y = None

epoch_loss += svi.step(x, vy)

49

Deep Probabilistic Programming - SSVAE

ELBO + classification accuracy for data set with 10% labeled

240 0.975

—— ELBO train — Test accuracy
ELBO test
220 0950
200 0925
180 _ 0900
° Z
8 £
@ 160 g 0875
<
140 0850
120 0.825
100 0800
o 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch

50

M
=
(V]
wn
1
on
£
£
£
©
.
on
(@)
j =
(a
(S
=
%
=
©
o)
(@)
P
(a
Q.
Q
(]
(]

ated digits

Newly gener

EGELSE
EEELR
oo~
NS
REEDIEID)
EEEIRIES
) S] S 5
[G (S0 N1
e ol ol
ENNDNE

Resources

Probabilistic Graphical Models - D Koller, N Friedman - 2009:
Chapter 21.4 and 3

Paper: On Bayesian Analysis of Mixtures with an Unknown Number of
Components (with discussion)
https://academic.oup.com/jrsssb/article-pdf/59/4/
731/49588858/jrsssb_59_4_731.pdf

RIMCMC / Involutive MCMC in Gen Tutorial
https://www.gen.dev/tutorials/rj/tutorial

Paper: Transforming Worlds: Automated Involutive MCMC for
Open-Universe Probabilistic Models
https://people.eecs.berkeley.edu/~russell/papers/
aabi2l-oupm.pdf

Data-Driven Proposals in Gen Tutorial
https://www.gen.dev/tutorials/

data-driven-proposals/tutorial 5

https://academic.oup.com/jrsssb/article-pdf/59/4/731/49588858/jrsssb_59_4_731.pdf
https://academic.oup.com/jrsssb/article-pdf/59/4/731/49588858/jrsssb_59_4_731.pdf
https://www.gen.dev/tutorials/rj/tutorial
https://people.eecs.berkeley.edu/~russell/papers/aabi21-oupm.pdf
https://people.eecs.berkeley.edu/~russell/papers/aabi21-oupm.pdf
https://www.gen.dev/tutorials/data-driven-proposals/tutorial
https://www.gen.dev/tutorials/data-driven-proposals/tutorial

Resources

Paper: Using probabilistic programs as proposals
https://arxiv.org/pdf/1801.03612.pdf

Paper: Pyro: Deep Universal Probabilistic Programming
https://arxiv.org/pdf/1810.09538.pdf

An Introduction to Probabilistic Programming: Chapter 8 Deep
Probabilistic Programming
https://arxiv.org/pdf/1809.10756.pdf

Pyro ELBO Gradients Estimators
https://pyro.ai/examples/svi_part_1iii.html

Paper: Auto-Encoding Variational Bayes
https://arxiv.org/pdf/1312.6114.pdf

Pyro Semi-Supervised Variational Auto-Encoder
https://pyro.ai/examples/ss-vae.html

53

https://arxiv.org/pdf/1801.03612.pdf
https://arxiv.org/pdf/1810.09538.pdf
https://arxiv.org/pdf/1809.10756.pdf
https://pyro.ai/examples/svi_part_iii.html
https://arxiv.org/pdf/1312.6114.pdf
https://pyro.ai/examples/ss-vae.html

- Today was last lecture

- 2911. A4 Deadline

- 0412. Assignment Discussion Session
- 06.12. Project Proposal Deadline

- 08.01. Project Milestone

- 28.01. & 29.01. Project Presentations

54

	Custom Inference
	Data-Driven Inference
	Probabilistic Programs as Proposals
	Deep Probabilistic Programming

