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All information on TISS/TUWEL and website:
https://probprog-ai-tuwien.github.io/2024/

Registration:
Deadline October 7th
Drop-date: October 16th
You have to complete A1 to officially register

Modality / Grading:
6-8 Lectures, 4 assignments
2 assignment discussions (mandatory, Zoom), 1 group project
Grading: 40% assignments, 60% project, no exam

Elective:
066 645 Data Science
066 926 Business Informatics
066 931 Logic and Computation
066 937 Software Engineering & Internet Computing 1
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194.150 Probabilistic Programming and AI: Organisation

Assignments:

Jupyterlab (mostly Python, link in TUWEL)

A1 deadline 16.10.
A2 deadline 25.10.
Discussion A1 & A2 13.11 (Zoom, link in TUWEL)

A3 deadline 15.11.
A4 deadline 29.11.
Discussion A3 & A4 04.12 (Zoom, link in TUWEL)

Group Project:

Proposal deadline 06.12.
Milestone 08.01.
Presentations 28.01 & 29.01
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Outlook

• What is probabilistic programming?
• Probability Theory
• Probabilistic Modelling
• Bayesian Inference
• Probabilistic Programming Languages
• Applications
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What is Probabilistic
Programming?



What is Probabilistic Programming?

Textbook definition:

Probabilistic programming is a programming paradigm in
which probabilistic models are specified and inference for
these models is performed automatically.

▷ Probabilistic models as programs

▷ Automatic posterior inference

(Explained later)
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What is Probabilistic Programming?

Where is the AI?
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Probabilistic Programming is AI!

Machine Learning
• Programs define neural
networks

• Data: input-output pairs
• Encodes how input maps to
output

• Optimise parameters with
automatic differentiation to
minimise error in mapping

• Black-box approach

Probabilistic Programming
• Programs define probabilistic
models

• Data: some observed data
• Encodes how unknown
variables generated data

• Find distribution over
unknown variables with
automatic inference that ”fits”
the data

• Explicit modelling +
uncertainty quantification
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Probabilistic Programming is AI!

7



Probabilistic Programming is AI!

What is thinking?
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Probabilistic Programming is AI!

What kind of programs can represent thinking?
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Why Probabilistic Programming?

• Probabilistic models allow us to
• incorporate prior knowledge
• describe dependencies between variables
• handle uncertainty

• Probabilistic programs specify probabilistic models
• Inference is concerned about updating our knowledge / belief
about unknown or uncertain quantities in the program

• This is achieved by conditioning / constraining the model with
observed data
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Why Probabilistic Programming?

• Traditionally statisticians developed probabilistic models on
paper and implemented inference algorithms

• Probabilistic programming separates modelling from inference
• Expressivity: Any probabilistic model can be implemented as a
probabilistic program

• General-purpose inference algorithms + inference engineering
• Enable incorporation of programming language and software
engineering advances (program analysis, debugging,
visualisations,...)
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First Look at Probabilistic Programming

y = k︸︷︷︸
slope

· x + d︸︷︷︸
intercept

12



First Look at Probabilistic Programming
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First Look at Probabilistic Programming: Visualisation

Possible worlds according to model Posterior distribution
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Probabilistic Modelling
(and Primer in Probability Theory)



Probabilistic Modelling

• The primitives in probabilistic modelling are random variables
• Two types of random variables:

• Latent variables Θ (Unknown parameter variables)
• Observed variables X (data variables)

• By relating the variables with mathematical functions, we can
model dependencies between the variables

• The model denotes the joint distribution over latent and
observed variables
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Random variables

A random variable X can be viewed as a distribution on some sample
space Ω – the set of possible outcomes.

Example. Bernoulli distribution parameterised by p, Ω = {0, 1}:

X ∼ Bernoulli(p) ⇐⇒

{
X = 1 with probability p
X = 0 with probability 1− p

Example. Uniform distribution parameterised by a < b, Ω = [a,b]:

P(X ∈ [c,d]) = min(b,d)−max(a, c)
b− a
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Probability mass function and density function

• A discrete variable X is fully described by its probability mass
function pX:

P(X ∈ A) =
∑
x∈A

pX(x)

• A continuous variable X is fully described by its probability
density function fX:

P(X ∈ A) =
∫
A
fX(x)dx
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Basic properties of random variables

• P(X ∈ Ω) = 1
• P(X ∈ ∅) = 0
• For disjoint outcomes A ∩ B = ∅ we have
P(X ∈ A ∪ B) = P(X ∈ A) + P(X ∈ B)

• Expected value for discrete variables E [X] =
∑

x∈Ω x · pX(x)
• Expected value for continuous variables E [X] =

∫
Ω
x · fX(x)dx
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Monte Carlo Simulation

By the law of large numbers the arithmetic mean of a sample
approaches the expected value and the histogram approaches the
density function when increasing the sample size.
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First probabilistic model

Scenario: A friend comes to us and wants to play a game of flipping
coins. We are suspicious of the coin that the friend brought and we
want to infer whether the coin is fair.

Observed variable: results of coin flips head/tail X.

Unknown variable: the probability of flipping heads p.

i-th coin flip: Xi ∼ Bernoulli(p)

p ∼ ??

0 1 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

p ∼ Uniform(0, 1) is a choice
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First probabilistic program
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Bayesian Inference



Bayesian view of probability

Frequentist probability:

The probability of an event is its relative frequency over time

Bayesian probability:

Probability is a measure of the degree of belief of the individual
assessing the uncertainty of a particular situation.

Probability represents a state of knowledge.
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Bayesian statistics
Bayesian modelling
• Prior Θ ∼ P(Θ)

Encodes our prior information/belief
about the latent variables

• Likelihood X ∼ P(X|Θ)

Encodes the way the observations are
believed to be generated from the
latents

• Joint (Θ, X) ∼ P(X|Θ) · P(Θ)

Specifies the full probabilistic model
• Posterior Θ ∼ P(Θ|X)
Is the distribution of latent variables
given that we have observed the data. It
denotes the updated information/belief
about the latent variables after the
experiment

Coin flip model
• p ∼ Uniform(0, 1)

• Xi ∼ Bernoulli(p)

• How to find
posterior?
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Posterior Distribution

Bayes’ Theorem

Θ ... latent/unknown variables, X ... data/observed variables

P(Θ|X)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
P(X|Θ) ·

prior︷ ︸︸ ︷
P(Θ)

P(X)︸︷︷︸
evidence

We can compute likelihood and prior.

The evidence and posterior are in general infeasible.

However, we can compute ratios P(Θ = θ1|X)/P(Θ = θ2|X).
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Probabilistic Programming Automates Bayesian Inference
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First inference result
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Belief updating
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Probabilistic Programming
Languages (PPLs)



Probabilistic Programming Languages
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Coin flip model in several PPLs
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Why so many Probabilistic Programming Languages?

Balance between expressivity and efficiency.

What class of models should I be able to implement?

How can we optimise inference for this class of models?
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Why so many Probabilistic Programming Languages?

Balance between expressivity and efficiency.

• Stan: only continuous variables, optimised for HMC and ADVI
• Pyro: optimised for deep probabilistic programming (SVI)
• Pymc: optimised for static-structure finite-dimensional models
• Gen: facilitates inference programming
• Turing: facilitates combination of many inference algorithms
• Beanmachine: takes a declarative approach
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Applications



Captcha breaking

Mansinghka, V. K., Kulkarni, T. D., Perov, Y. N., & Tenenbaum, J. (2013).
Approximate bayesian image interpretation using generative
probabilistic graphics programs. Advances in Neural Information
Processing Systems, 26.
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Object Tracking

Neiswanger, W., Wood, F., & Xing, E. (2014, April). The dependent
Dirichlet process mixture of objects for detection-free tracking and
object modeling. In Artificial Intelligence and Statistics (pp. 660-668).
PMLR.
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Excel Auto-Fill

Gulwani, S. (2011). Automating string processing in spreadsheets
using input-output examples. ACM Sigplan Notices, 46(1), 317-330.
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Pose Estimation

Cusumano-Towner, M. F. (2020). Gen: a high-level programming
platform for probabilistic inference (Doctoral dissertation,
Massachusetts Institute of Technology). Kulkarni, T. D., Kohli, P.,
Tenenbaum, J. B., & Mansinghka, V. (2015). Picture: A probabilistic
programming language for scene perception. In Proceedings of the
ieee conference on computer vision and pattern recognition (pp.
4390-4399).
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Time Series

Cusumano-Towner, M. F. (2020). Gen: a high-level programming
platform for probabilistic inference (Doctoral dissertation,
Massachusetts Institute of Technology).
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Hadron Collider

Baydin, A. G., Shao, L., Bhimji, W., Heinrich, L., Meadows, L., Liu, J., ... &
Wood, F. (2019, November). Etalumis: Bringing probabilistic
programming to scientific simulators at scale. In Proceedings of the
international conference for high performance computing,
networking, storage and analysis (pp. 1-24).
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Nuclear Test Detection

Arora, N. S., Russell, S., & Sudderth, E. (2013). NET‐VISA: Network
processing vertically integrated seismic analysis. Bulletin of the
Seismological Society of America, 103(2A), 709-729.
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194.150 Probabilistic Programming and AI: Course overview
Lectures (not mandatory)
• Bayesian Inference
• PPL Design + Implementation
• Inference algorithms
• Hands-on probabilistic
programming

Assignments + mandatory
discussion session (40%)
• A1: Introduction to PPLs
• A2: Minimal PPL
implementation

• A3: MH inference
• A4: Gradient-based inference

Group Project (60%)

• You submit project proposals
• Initial ideas:

• Reproducing research papers in a simplified form
• Answering questions for real-world data sets with Bayesian Inference
• Implementing and testing an inference algorithm

Remember: Successfully completing A1 until October 16th is
mandatory for your final registration (find A1 on TUWEL)

39


	What is Probabilistic Programming?
	Probabilistic Modelling  (and Primer in Probability Theory)
	Bayesian Inference
	Probabilistic Programming Languages (PPLs)
	Applications

