Probabilistic Programming and Al
Kick Off

Markus Bock and Jurgen Cito

Research Unit of Software Engineering

150 Probabilistic Programming and Al: Organisation

All information on TISS/TUWEL and website:
https://probprog-ai-tuwien.github.io/2024/

Registration:

Deadline October 7th

Drop-date: October 16th

You have to complete A1 to officially register

Modality / Grading:
6-8 Lectures, 4 assignments
2 assignment discussions (mandatory, Zoom), 1 group project

Grading: 40% assignments, 60% project, no exam

Elective:

066 645 Data Science

066 926 Business Informatics

066 931 Logic and Computation

066 937 Software Engineering & Internet Computing 1

https://probprog-ai-tuwien.github.io/2024/

194150 Probabilistic Programming and Al: Organisation

Assignments:
Jupyterlab (mostly Python, link in TUWEL)

A1 deadline 16.10.
A2 deadline 25.10.
Discussion AT & A2 1311 (Zoom, link in TUWEL)

A3 deadline 1511.
A4 deadline 2911.
Discussion A3 & A4 0412 (Zoom, link in TUWEL)

Group Project:

Proposal deadline 06.12.
Milestone 08.01.
Presentations 28.01 & 29.01

- What is probabilistic programming?

- Probability Theory

- Probabilistic Modelling

- Bayesian Inference

- Probabilistic Programming Languages
- Applications

What is Probabilistic
Programming?

What is Probabilistic Programming?

Textbook definition:

Probabilistic programming is a programming paradigm in
which probabilistic models are specified and inference for
these models is performed automatically.

> Probabilistic models as programs
> Automatic posterior inference

(Explained later)

What is Probabilistic Programming

194.150 Probabilistic Programming and Al

2024W, VU, 4.0h, 6.0EC

Description News Course registration Feedback
Wh r i 2 ~ Course registration Waiting list (position 22)
ere is the Al
° Participants 35/35
Waiting list 22
Application begin 04.09.2024, 09:00
Application end 07.10.2024, 23:55
End of Online-Deregistration 16.10.2024, 23:55

Confirm registration automatically

Deregistration
L3

Probabilistic Programming is Al!

Machine Learning Probabilistic Programming

- Programs define neural - Programs define probabilistic
networks models

- Data: input-output pairs - Data: some observed data

- Encodes how input maps to - Encodes how unknown
output variables generated data

- Optimise parameters with - Find distribution over
automatic differentiation to unknown variables with
minimise error in mapping automatic inference that "fits”

- Black-box approach the data

- Explicit modelling +
uncertainty quantification

Probabilistic Programming is Al!

IV Uncertain knowledge and reasoning

18 Probabilistic Programming 641

18.1 Relational Probability Models 642
182 Open-Universe Probability Models 648
183 Keeping Track of a Complex World . 655
184 Programs as Probability Models L. 660
SUMMAry L. 664
Bibliographical and Historical Notes 665

Probabilistic Programming is Al!

What is thinking?

How can we describe the

intelligent inferences made in <\I:(> Hovslll.can we enr?_inee;)r
everyday human reasoning? intelligent machines?

Computational theory of mind

run(program)

thinking =

mental representations = -
running a program

computer programs

mind = computer

Probabilistic Programming is Al!

What kind of programs can represent thinking?

Structure Probability

Knowledge Uncertainty

Why Probabilistic Programming?

- Probabilistic models allow us to
- incorporate prior knowledge
- describe dependencies between variables
- handle uncertainty
- Probabilistic programs specify probabilistic models
- Inference is concerned about updating our knowledge / belief
about unknown or uncertain quantities in the program
- This is achieved by conditioning / constraining the model with
observed data

Why Probabilistic Programming?

- Traditionally statisticians developed probabilistic models on
paper and implemented inference algorithms

- Probabilistic programming separates modelling from inference

- Expressivity: Any probabilistic model can be implemented as a
probabilistic program

- General-purpose inference algorithms + inference engineering

- Enable incorporation of programming language and software
engineering advances (program analysis, debugging,
visualisations,...)

1

First Look at Probabilistic Programming

Data
1
o
>
Posterior Inference
- using AdvancedMH
function do_inference()
e x = [-1., -0.5, 0.8, 0.5, 1.0]
o o 0w o o y = [-3.2, -1.8, -0.5, -8.2, 1.5]
model = linear_regression(x, y)

res = sample(model,

y=k -x+ d MH
~~ ~~ :slope => RandomWalkProposal(Normal(0,0.1)),
slope intercept :intercept => RandomwWalkProposal(Normal(8,8.2))
)y
1000
Probabilistic Model)
using Turing maximum_a_posteriori_ix = argmax(res[:1p])
return (

@model function linear_regression(x, y) .
prior over latents res[:slope] [maximum_a_posteriori_ix],
slope ~ Nornal(e, 3) res[:intercept] [maximum_a_posteriori_ix]

~ '
ntercept ~ N (e, 3

il P ormal(e, 3) end

likelihood

for i in 1:length(x)

#y = slope * x + intercept
y[il ~ Normal(slope x x[i] + intercept, 1.)
end

First Look at Probabilistic Programming

using Turing
@nodel function linear_regression(x, y)
prior over latents
slope ~ Normal(@, 3)
intercept ~ Normal(e, 3)

likelihood

for i in 1:length(x)
#y = slope * x + intercept
y[i] ~ Normal(slope % x[i] + intercept, 1.)

end
end

using AdvancedMH
function do_inference()
x = [-1., -0.5, 0.0, 0.5, 1,0]
y = [-3.2, 1.8, -0.5, -0.2, 1.5]
model = linear_regression(x, y)
res = sample(model,
MH(
:slope => RandomhalkProposal(Normal(9,0.1)),
rintercept => RandomWalkProposal(Normal(e,0.2))

1000
)
maximun_a_posteriori_ix = argmax(res[:1p])
return (
res[:slope] [maximum_a_posteriori_ix],
res[:intercept] [maximum_a_posteriori_ix]

Choice of Priors
Choice of
Likelihood

Choice of
Inference

Choice of
Visualistation

Feedback Cycle

SE for PPL Research in our
research group

Program Comprehension
(Reasoning about Programs)

Software Evolution
(Reasoning about Change)

Software Visualization
(Reasoning about Large-scale Traces)

Software Testing

(Reasoning about Correctness)

First Look at Probabilistic Programming: Visualisation

Possible worlds according to model Posterior distribution

14

Probabilistic Modelling
(and Primer in Probability Theory)

Probabilistic Modelling

- The primitives in probabilistic modelling are random variables
- Two types of random variables:

- Latent variables © (Unknown parameter variables)

- Observed variables X (data variables)

- By relating the variables with mathematical functions, we can
model dependencies between the variables

- The model denotes the joint distribution over latent and
observed variables

Random variables

A random variable X can be viewed as a distribution on some sample
space Q - the set of possible outcomes.

Example. Bernoulli distribution parameterised by p, Q = {0, 1}:

X =1 with probability p

X ~ Bernoulli(p) <=) .
X =0 with probability1—p

Example. Uniform distribution parameterised by a < b, Q = [a, b]:

min(b, d) — max(a, c)

P(X € [c,d]) = —

16

Probability mass function and density function

- A discrete variable X is fully described by its probability mass
function py:

P(XeA) = px(x)

XEA

- A continuous variable X is fully described by its probability

density function fy:
P(X € A) = /fx(x)dx
A

Basic properties of random variables

- PXeQ)=1
- PXe®)=0
- For disjoint outcomes AN B = () we have
P(X € AUB) = P(X € A) + P(X € B)
- Expected value for discrete variables E [X] = > o X - Px(X)

- Expected value for continuous variables E [X] = [, x - fx(x)dx

Carlo Simulation

By the law of large numbers the arithmetic mean of a sample
approaches the expected value and the histogram approaches the
density function when increasing the sample size.

torch.manual_seed () o4
sample = dist.Normal(@,1).sample((10_000,))
plt.hist(sample, bins=50, density=True) 03
Xx = torch.linspace(sample.min(),sample.max(), 100)
plt.plot(x, dist.Normal(@,1).log_prob(x).exp())
plt.savefig("lecture_1_figs/normal_hist.pdf") 0.2
sample.mean()
v 01s
01
tensor(-0.0107)

19

First probabilistic model

Scenario: A friend comes to us and wants to play a game of flipping
coins. We are suspicious of the coin that the friend brought and we
want to infer whether the coin is fair.

Observed variable: results of coin flips head/tail X.
Unknown variable: the probability of flipping heads p.
i-th coin flip: X; ~ Bernoulli(p)

p~ 77

0 1 0.0 0.5 1.0 0.0

p ~ Uniform(0,1) is a choice
20

First probabilistic program

© o NOULL &~ WNPRP

[EEgY
R o

using Turing

@model function coinflip(y)
p ~ Uniform(0,1)
N = length(y)
for n in 1:N
y[n] ~ Bernoulli(p)
end
end

y = [o,1,1,0,1,1,1,0,1,1]

21

Bayesian Inference

Bayesian view of probability

Frequentist probability:

The probability of an event is its relative frequency over time

Bayesian probability:

Probability is a measure of the degree of belief of the individual
assessing the uncertainty of a particular situation.

Probability represents a state of knowledge.

22

Bayesian statistics

Bayesian modelling Coin flip model

- Prior © ~ P(©) - p ~ Uniform(0, 1)
Encodes our prior information/belief
about the latent variables

- Likelihood X ~ P(X|©) - X;j ~ Bernoulli(p)
Encodes the way the observations are
believed to be generated from the
latents

- Joint (©,X) ~ P(X|®©) - P(©)
Specifies the full probabilistic model

- Posterior © ~ P(©|X) * How to find
Is the distribution of latent variables posterior?
given that we have observed the data. It
denotes the updated information/belief
about the latent variables after the
experiment 23

Posterior Distribution

Bayes’ Theorem
O ... latent/unknown variables, X ... data/observed variables

likelihood prior

P(X|©) - P(©)

P(O|X) = Sl b Bl

posterior ~~
evidence

We can compute likelihood and prior.
The evidence and posterior are in general infeasible.

However, we can compute ratios P(© = 6;|X)/P(© = 6,|X).

24

Probabilistic Programming Automates Bayesian Inference

O 0O NO UL B~ WN B

e e ol el
A WNPRPROS

using Turing

@model function coinflip(y)
p ~ Uniform(@,1)
N = length(y)
for n in 1:N
y[n] ~ Bernoulli(p)
end
end

y = [0,1,1,0,1,1,1,0,1,1]
Turing.Random.seed! (0)

res = sample(coinflip(y), NUTS(), 1000)

25

First inference result

Summary Statistics
parameters mean std mcse ess_bulk ess_tail rhat ess_per_sec
Symbol Float6é4 Float64 Float64 Float64 Float64 Float64 Float64

p 0.6632 0.1296 0.0069 351.9368 604.9492 1.0033 4399.2097
Quantiles
parameters 2.5% 25.0% 50.0% 75.0% 97.5%
Symbol Float6é4 Float64 Float64 Float64 Float64

p 0.3878 0.5817 0.6691 0.7590 0.8974

P P
09 ‘ ‘ \ ’ 25 ’/ - \\
o8 /
i l k ' \ J | [| > ° / \
2 H AR = \
" os ‘ r ! 3 1o)
| 04 0.5 P \
03 ///‘/ -
. 00 L—1
600 800 1000 1200 1400 03 04 05 06 07 08 09

26

Belief updating

Prior flip 1 =0 flip 2 =1 flip 3 =1 flip_ 4 =0 flip 5 =1
0.0 0.50 10 0.0 033 1.0 0.0 0.50 1.0 0.0 0.60 1.0 0.0 0.50 1.0 0.0 0.57 1.0
0.0 0.50 1.0 0.0 0.40 1.0 0.0 0.50 1.0 0.0 0.57 1.0 0.0 0.50 1.0 0.0 0.56 1.0
flip_6 = 1 flip_7 =1 flip_8 = 0 flip 9 = 1 flip_10 = 1 7 After 70 heads
0.0 0.62 1.0 0.0 0.67 1.0 0.0 0.60 1.0 0.0 0.64 1.0 0.0 0.67 1.0 :O 0 0.70 1.0
0.0 0.60 1.0 0.0 0.64 1.0 0.0 0.58 1.0 0.0 0.62 1.0 0.0 0.64 1.0 :O 0 0.68 1.0

27

Probabilistic Programming
Languages (PPLs)

Probabilistic Programming Languages

Anglican
Turing.] 1 PRISM
lheiione WIOHE
BeanmachineI®ar .~
Lea Church — p; o 0O
Edward FACTORIE Analytica ST

BayesDB

Tuffy dgreta proBT
ProbLog PSIS | NumPyro
Figaro

BLOG Saul Low- level Chimple

Gen WebPPL Venture RankPL BUGS

1 - CuPPL
Troll el sAT dimple
PSQL First-order
Rainier PMTK Gamble
Probabilistic-C TensorFlow Probability

PWhile Alchemy Picture

P yMC pomegranate

Blang

ProbCog

28

Coin flip model in several PPLs

import pyro
def coinflip(y):

dataiit N; p = pyro.sample("p", dist.Uniform(@,1))
int yINI; with pyro.plate("flips"):
} pyro.sample("obs", dist.Bernoulli(p), obs=y)
parameters {
real p; import pymc as pm
3} with pm.Model() as model:
model { p = pm.Uniform("p", @, 1)
p ~ uniform(0,1); pm.Bernoulli("obs", p, observed=y)

for (n in 1:N)
y[nl ~ bernoulli(o);

using Gen
@gen function coinflip()
p ~ uniform(@,1)
N = length(y)
for n in 1:N for n in 1:N return dist.Uniform(o,1)
{:y => n} ~ bernoulli(p) yInl ~ Bernoulli(p) @bm. random_variable
end end def y(i: int):
end end return dist.Bernoulli(p())

using Turing

@model function coinflip(y)
p ~ Uniform(0,1)
N = length(y)

import beanmachine as bm
@bm. random_variable
def p():

29

Why so many Probabilistic Programming Languages?

Balance between expressivity and efficiency.
What class of models should | be able to implement?

How can we optimise inference for this class of models?

30

Why so many Probabilistic Programming Languages?

Balance between expressivity and efficiency.

- Stan: only continuous variables, optimised for HMC and ADVI

- Pyro: optimised for deep probabilistic programming (SVI)

- Pymc: optimised for static-structure finite-dimensional models
- Gen: facilitates inference programming

- Turing: facilitates combination of many inference algorithms

- Beanmachine: takes a declarative approach

31

Applications

Captcha breaking

Mansinghka, V. K, Kulkarni, T. D., Perov, Y. N., & Tenenbaum, J. (2013).
Approximate bayesian image interpretation using generative
probabilistic graphics programs. Advances in Neural Information
Processing Systems, 26.

Input Image Intermediate Iterations Final Inferred Image
D 2 ey
re | rs
)
EEEa K
\4 h

drmiv|m hvd flohhwd

c

w“Ql‘

3~

32

Object Tracking

Neiswanger, W.,, Wood, F, & Xing, E. (2014, April). The dependent
Dirichlet process mixture of objects for detection-free tracking and
object modeling. In Artificial Intelligence and Statistics (pp. 660-668).
PMLR.

() - e L — ©

F BB BB BB S

“Time step t

33

Excel Auto-Fill

Gulwani, S. (2011). Automating string processing in spreadsheets
using input-output examples. ACM Sigplan Notices, 46(1), 317-330.

® Excel Datei Bearb

[6) Automatisches Spe

Start Einfligen Zeichne

= fx o
A B
1 01.01.23
2 15.01.23
3 29.01.23
p [|
12.02.23
5

Pose Estimation

Cusumano-Towner, M. F. (2020). Gen: a high-level programming
platform for probabilistic inference (Doctoral dissertation,
Massachusetts Institute of Technology). Kulkarni, T. D., Kohli, P,
Tenenbaum, J. B,, & Mansinghka, V. (2015). Picture: A probabilistic
programming language for scene perception. In Proceedings of the
ieee conference on computer vision and pattern recognition (pp.
4390-4399).

voive MO v voktve M voave M

(b) For each frame in (a), the inferred 6DoF object poses and object-object contact planes

35

Cusumano-Towner, M. F. (2020). Gen: a high-level programming
platform for probabilistic inference (Doctoral dissertation,
Massachusetts Institute of Technology).

Airline Passenger Data

500

-=+- Observed Data
4004 ——Predictions

+ Held-out Data _ ¢
5 A

prs
M’f‘wg

Passenger Volume
o (o~

n-——
1948 1950 1952 1954 1956 1958 1960
Year

L

Probabilistic Programming Neural Network Learning

+ Observed Data .+ Observed Data

. Future Data . Future Data

—— Predictions —— Predictions

ps M
\ ‘ i

36

Baydin, A. G., Shao, L., Bhimji, W., Heinrich, L., Meadows, L., Liu, /., ... &
Wood, F. (2019, November). Etalumis: Bringing probabilistic
programming to scientific simulators at scale. In Proceedings of the
international conference for high performance computing,
networking, storage and analysis (pp. 1-24).

Tpx <oy pz
10 os XL el
0s L
02
06 04
04 0 o1
02
00 oo 0o
ENC I = o s i3 as 45 a5 4
Momentum [GeV/c] Momentum [GeV/c] Momentum [GeV/c]
FSP Energy 1 Decay Channel
10
01s i
oaf i
!
a0 os] |t
oaf |t
oos !
02 H
!
000 o0
T o 7 3 4 I R)
Energy (Gev]
FSP Energy 2 MET
0.15 o
~ 7 20
3
EE)
4 010 15
520 10
H 00s
Y os
o 000 o0
e 0 20 30 40 I
F5P 1 Energy [Gev] Eneray (Gev) Missing ET

37

Nuclear Test Detection

Arora, N. S, Russell, S.,, & Sudderth, E. (2013). NET-VISA: NetworkR
processing vertically integrated seismic analysis. Bulletin of the
Seismological Society of America, 103(2A), 709-729.

38

194150 Probabilistic Programming and Al: Course overview

Lectures (not mandatory) Assignments + mandatory
- Bayesian Inference discussion session (40%)
- PPL Design + Implementation - Al: Introduction to PPLs
- Inference algorithms » A2: Minimal PPL

- Hands-on probabilistic implementation

programming - A3: MH inference
- A4: Gradient-based inference
Group Project (60%)

- You submit project proposals
- Initial ideas:
-+ Reproducing research papers in a simplified form
- Answering questions for real-world data sets with Bayesian Inference

- Implementing and testing an inference algorithm

Remember: Successfully completing A1 until October 16th is
mandatory for your final registration (find A1 on TUWEL)
39

	What is Probabilistic Programming?
	Probabilistic Modelling (and Primer in Probability Theory)
	Bayesian Inference
	Probabilistic Programming Languages (PPLs)
	Applications

