Probabilistic Programming and AI

Kick Off

Markus Böck and Jürgen Cito

Research Unit of Software Engineering

194.150 Probabilistic Programming and AI: Organisation

All information on TISS/TUWEL and website: <https://probprog-ai-tuwien.github.io/2024/>

Registration:

Deadline October 7th

Drop-date: October 16th

You have to complete A1 to officially register

Modality / Grading:

6-8 Lectures, 4 assignments

2 assignment discussions (mandatory, Zoom), 1 group project

Grading: 40% assignments, 60% project, no exam

Elective:

066 645 Data Science

066 926 Business Informatics

066 931 Logic and Computation

066 937 Software Engineering & Internet Computing 1

Assignments:

Jupyterlab (mostly Python, link in TUWEL)

A1 deadline 16.10.

A2 deadline 25.10.

Discussion A1 & A2 13.11 (Zoom, link in TUWEL)

A3 deadline 15.11. A4 deadline 29.11. Discussion A3 & A4 04.12 (Zoom, link in TUWEL)

Group Project:

Proposal deadline 06.12. Milestone 08.01. Presentations 28.01 & 29.01

- What is probabilistic programming?
- Probability Theory
- Probabilistic Modelling
- Bayesian Inference
- Probabilistic Programming Languages
- Applications

[What is Probabilistic](#page-4-0) [Programming?](#page-4-0)

Textbook definition:

Probabilistic programming is a programming paradigm in which probabilistic models are specified and inference for these models is performed automatically.

 \triangleright Probabilistic models as programs

▷ Automatic posterior inference

(Explained later)

Where is the AI?

Probabilistic Programming is AI!

Machine Learning

- Programs define neural networks
- Data: input-output pairs
- Encodes how input maps to output
- Optimise parameters with automatic differentiation to minimise error in mapping
- Black-box approach

Probabilistic Programming

- Programs define probabilistic models
- Data: some observed data
- Encodes how unknown variables generated data
- Find distribution over unknown variables with automatic inference that "fits" the data
- Explicit modelling + uncertainty quantification

Probabilistic Programming is AI!

IV Uncertain knowledge and reasoning

What is thinking?

How can we describe the intelligent inferences made in everyday human reasoning?

How can we engineer
intelligent machines?

Computational theory of mind

 $mind = computer$

mental representations = computer programs

run(program)

thinking $=$ running a program What kind of programs can represent thinking?

Why Probabilistic Programming?

- Probabilistic models allow us to
	- incorporate prior knowledge
	- describe dependencies between variables
	- handle uncertainty
- Probabilistic programs specify probabilistic models
- Inference is concerned about updating our knowledge / belief about unknown or uncertain quantities in the program
- This is achieved by conditioning / constraining the model with observed data
- Traditionally statisticians developed probabilistic models on paper and implemented inference algorithms
- Probabilistic programming separates modelling from inference
- Expressivity: Any probabilistic model can be implemented as a probabilistic program
- General-purpose inference algorithms + inference engineering
- Enable incorporation of programming language and software engineering advances (program analysis, debugging, visualisations,...)

First Look at Probabilistic Programming

Posterior Inference

```
using AdvancedMH
function do_inference()
    x = [-1, -0.5, 0.0, 0.5, 1.0]y = [-3.2, -1.8, -0.5, -0.2, 1.5]model = linear regression(x, y)res = sample(model,MH<sub>(</sub>
            : slope => RandomWalkProposal(Normal(0.0.1)).
            :intercept => RandomWalkProposal(Normal(0,0.2))
        ١,
        1000
    maximum_a_ posteriori_ix = argmax(res[:lp])return (
        res[:slope][maximum_a_posteriori_ix],
        res[:intercept][maximum_a_posteriori_ix]
end
```
First Look at Probabilistic Programming

Possible worlds according to model Posterior distribution

[Probabilistic Modelling](#page-16-0) [\(and Primer in Probability Theory\)](#page-16-0)

- The primitives in probabilistic modelling are random variables
- Two types of random variables:
	- Latent variables Θ (Unknown parameter variables)
	- Observed variables *X* (data variables)
- By relating the variables with mathematical functions, we can model dependencies between the variables
- \cdot The model denotes the joint distribution over latent and observed variables

A random variable *X* can be viewed as a distribution on some sample space Ω – the set of possible outcomes.

Example. Bernoulli distribution parameterised by p , $\Omega = \{0, 1\}$:

$$
X \sim \text{Bernoulli}(p) \iff \begin{cases} X = 1 & \text{with probability } p \\ X = 0 & \text{with probability } 1 - p \end{cases}
$$

Example. Uniform distribution parameterised by $a < b$, $\Omega = [a, b]$:

$$
P(X \in [c, d]) = \frac{\min(b, d) - \max(a, c)}{b - a}
$$

Probability mass function and density function

• A discrete variable *X* is fully described by its probability mass function p_X :

$$
P(X \in A) = \sum_{x \in A} p_X(x)
$$

• A continuous variable *X* is fully described by its probability density function *fX*:

$$
P(X \in A) = \int_A f_X(x) dx
$$

- $P(X \in \Omega) = 1$
- $P(X \in \emptyset) = 0$
- For disjoint outcomes *A ∩ B* = *∅* we have $P(X \in A \cup B) = P(X \in A) + P(X \in B)$
- Expected value for discrete variables $\mathbb{E}[X] = \sum_{x \in \Omega} x \cdot p_X(x)$
- Expected value for continuous variables $\mathbb{E}[X] = \int_{\Omega} x \cdot f_X(x) dx$

By the law of large numbers the arithmetic mean of a sample approaches the expected value and the histogram approaches the density function when increasing the sample size.

```
torch.manual seed(0)
   sample = dist.Normal(0.1).sample((10 000.))plt.hist(sample, bins=50, density=True)
   x = torch. linspace(sample.min(), sample.max(), 100)
   plt.plot(x, dist.Normal(0,1).log prob(x).exp())plt.savefig("lecture 1 figs/normal hist.pdf")
   sample.mean()
 \times 0.1s
tensor(-0.0107)
```


First probabilistic model

Scenario: A friend comes to us and wants to play a game of flipping coins. We are suspicious of the coin that the friend brought and we want to infer whether the coin is fair.

Observed variable: results of coin flips head/tail *X*.

Unknown variable: the probability of flipping heads *p*.

i-th coin flip: *Xⁱ ∼* Bernoulli(*p*)

p ∼ ??

p ∼ Uniform(0*,* 1) is a choice

First probabilistic program

 $\mathbf{1}$ using Turing $\overline{2}$ $\overline{3}$ Θ model function coinflip(y) $p \sim$ Uniform $(0, 1)$ $\overline{4}$ 5 $N = length(y)$ 6 for n in 1:N $\overline{7}$ $y[n]$ ~ Bernoulli(p) 8 end 9 end 10 11 $y = [0, 1, 1, 0, 1, 1, 1, 0, 1, 1]$

[Bayesian Inference](#page-24-0)

Frequentist probability:

The probability of an event is its relative frequency over time

Bayesian probability:

Probability is a measure of the *degree of belief* of the individual assessing the uncertainty of a particular situation.

Probability represents a *state of knowledge*.

Bayesian statistics

Bayesian modelling

- Prior Θ *∼* P(Θ) Encodes our prior information/belief about the latent variables
- Likelihood *X ∼* P(*X|*Θ) Encodes the way the observations are believed to be generated from the latents
- Joint (Θ*, X*) *∼* P(*X|*Θ) *·* P(Θ) Specifies the full probabilistic model
- Posterior Θ *∼* P(Θ*|X*) Is the distribution of latent variables *given* that we have observed the data. It denotes the updated information/belief about the latent variables after the experiment

Coin flip model

• *p ∼* Uniform(0*,* 1)

• *Xⁱ ∼* Bernoulli(*p*)

• How to find posterior?

Bayes' Theorem

Θ ... latent/unknown variables, *X* ... data/observed variables

We can compute likelihood and prior.

The evidence and posterior are in general infeasible.

However, we can compute ratios $P(\Theta = \theta_1 | X) / P(\Theta = \theta_2 | X)$.

```
using Turing
 \mathbf{1}\overline{2}3
       \Thetamodel function coinflip(y)
 \overline{4}p \sim Uniform (0, 1)5
            N = \text{length}(y)for n in 1:N
 6
 \overline{7}y[n] ~ Bernoulli(p)
 8
            end
 \mathbf{q}end
10
11y = [0,1,1,0,1,1,1,0,1,1]12
13
       Turing Random seed! (0)
14
       res = sample(cointlip(y), NUTS(), 1000)
```
First inference result

Belief updating

[Probabilistic Programming](#page-31-0) [Languages \(PPLs\)](#page-31-0)

Probabilistic Programming Languages


```
data fint N:
    int y[N];parameters {
    real p:
model {
    p \sim uniform(0,1);
    for (n in 1:N)v[n] ~ bernoulli(o);
```

```
import pyro
def coinflip(v):
    p = pyro. sample("p". dist. Uniform(0.1))
    with pyro.plate("flips"):
        pyro.sample("obs", dist.Bernoulli(p), obs=y)
```

```
import pymc as pm
with pm.Model() as model:
    p = pm.Uniform("p", 0, 1)pm Bernoulli("obs", p. observed=v)
```

```
using Gen
@gen function coinflip()
    p \sim \text{uniform}(0, 1)N = \text{length}(v)for n in 1:N
         \{: v == n\} ~ bernoulli(p)
     end
end
```

```
using Turing
@model function coinflip(y)
    p \sim Uniform (0.1)N = \text{length}(y)for n in 1:N
        v[n] ~ Bernoulli(p)
    end
end
```

```
import beanmachine as bm
@bm.random variable
def p():
    return dist.Uniform(0.1)
@bm.random variable
def v(i: int):return dist. Bernoulli(p())
```
Balance between expressivity and efficiency.

What class of models should I be able to implement? How can we optimise inference for this class of models?

Balance between expressivity and efficiency.

- Stan: only continuous variables, optimised for HMC and ADVI
- Pyro: optimised for deep probabilistic programming (SVI)
- Pymc: optimised for static-structure finite-dimensional models
- Gen: facilitates inference programming
- Turing: facilitates combination of many inference algorithms
- Beanmachine: takes a declarative approach

[Applications](#page-36-0)

Captcha breaking

Mansinghka, V. K., Kulkarni, T. D., Perov, Y. N., & Tenenbaum, J. (2013). Approximate bayesian image interpretation using generative probabilistic graphics programs. Advances in Neural Information Processing Systems, 26.

Neiswanger, W., Wood, F., & Xing, E. (2014, April). The dependent Dirichlet process mixture of objects for detection-free tracking and object modeling. In Artificial Intelligence and Statistics (pp. 660-668). PMLR.

Excel Auto-Fill

Gulwani, S. (2011). Automating string processing in spreadsheets using input-output examples. ACM Sigplan Notices, 46(1), 317-330.

Cusumano-Towner, M. F. (2020). Gen: a high-level programming platform for probabilistic inference (Doctoral dissertation, Massachusetts Institute of Technology). Kulkarni, T. D., Kohli, P., Tenenbaum, J. B., & Mansinghka, V. (2015). Picture: A probabilistic programming language for scene perception. In Proceedings of the ieee conference on computer vision and pattern recognition (pp. 4390-4399).

(b) For each frame in (a), the inferred 6DoF object poses and object-object contact planes

Cusumano-Towner, M. F. (2020). Gen: a high-level programming platform for probabilistic inference (Doctoral dissertation, Massachusetts Institute of Technology).

Hadron Collider

Baydin, A. G., Shao, L., Bhimji, W., Heinrich, L., Meadows, L., Liu, J., ... & Wood, F. (2019, November). Etalumis: Bringing probabilistic programming to scientific simulators at scale. In Proceedings of the international conference for high performance computing, networking, storage and analysis (pp. 1-24).

Arora, N. S., Russell, S., & Sudderth, E. (2013). NET‐VISA: Network processing vertically integrated seismic analysis. Bulletin of the Seismological Society of America, 103(2A), 709-729.

194.150 Probabilistic Programming and AI: Course overview

Lectures (not mandatory)

- Bayesian Inference
- PPL Design + Implementation
- Inference algorithms
- Hands-on probabilistic programming

Assignments + mandatory discussion session (40%)

- A1: Introduction to PPLs
- A2: Minimal PPL implementation
- A3: MH inference
- A4: Gradient-based inference

Group Project (60%)

- You submit project proposals
- Initial ideas:
	- Reproducing research papers in a simplified form
	- Answering questions for real-world data sets with Bayesian Inference
	- Implementing and testing an inference algorithm

Remember: Successfully completing A1 until October 16th is mandatory for your final registration (find A1 on TUWEL)