
Probabilistic Programming and AI: Lecture 5
Advanced Topics in Probabilistic Programming

Markus Böck and Jürgen Cito

Research Unit of Software Engineering

Table of contents

1. Factorisation of Joint Probability Density and Independence

2. Custom Inference

3. Data-Driven Inference

4. Probabilistic Programs as Proposals

5. Deep Probabilistic Programming

1

Factorisation of Joint Probability
Density and Independence

Factorisation of Joint Probability Density and Independence

Factorisation of Joint Probability Density and Independence

X is independent of Y, if

P(X, Y) = P(X)P(Y).

X is conditionally independent of Y given Z, if

P(X, Y|Z) = P(X|Z)P(Y|Z).

The density of a probabilistic program (model) always consists of
factors (generally depending on multiple variables).

To check if two random variables are independent, we have to check
which variables contribute to which factor.

Probabilistic Graphical Models - Koller, Friedman: Chapter 2.1.4 and 3

2

Factorisation of Joint Probability Density and Independence

Indirect causal effect

X

Z

Y

P(X, Y, Z) = P(Y|Z)P(Z|X)P(X)

Get intuition by considering ”almost deterministic”
models.

1 x = sample (” X ” , d i s t . Normal (0 , 0 . 0 0 1))
2 z = sample (” Z ” , d i s t . Normal (x + 1 , 0 . 0 0 1) , observed =??)
3 y = sample (” Y ” , d i s t . Normal (z + 1 , 0 . 0 0 1))

X cannot influence Y via Z if Z is observed.

P(X, Y|Z) = P(X, Y, Z)
P(Z) =

P(Y|Z)P(Z|X)P(X)
P(Z)

= P(Y|Z)P(X, Z)P(Z) = P(Y|Z)P(X|Z)

3

Factorisation of Joint Probability Density and Independence

Indirect causal effect

Test Difficulty Time Spent Studying

Grade

Letter of Recommendation

Exhaustion

If we know the grade, the test difficulty or time spent studying does
not influence the letter of recommendation anymore.

4

Factorisation of Joint Probability Density and Independence

Indirect evidential effect

Y

Z

X

P(X, Y, Z) = P(X|Z)P(Z|Y)P(Y)

1 y = sample (” Y ” , d i s t . Normal (0 , 0 . 0 0 1))
2 z = sample (” Z ” , d i s t . Normal (y + 1 , 0 . 0 0 1) , observed =??)
3 x = sample (” X ” , d i s t . Normal (z + 1 , 0 . 0 0 1))

X can influence Y via Z but only if Z is not observed.

as before P(X, Y|Z) = P(Y|Z)P(X|Z)

5

Factorisation of Joint Probability Density and Independence

Indirect evidential effect

Test Difficulty Time Spent Studying

Grade

Letter of Recommendation

Exhaustion

If we know the grade, the letter of recommendation gives no
information about the test difficulty or time spent studying.

6

Factorisation of Joint Probability Density and Independence

Common cause

Z

X Y

P(X, Y, Z) = P(Y|Z)P(X|Z)P(Z)

1 z = sample (” Z ” , d i s t . Normal (0 , 0 . 0 0 1) , observed =??)
2 x = sample (” X ” , d i s t . Normal (z , 0 . 0 0 1))
3 y = sample (” Y ” , d i s t . Normal (z , 0 . 0 0 1))

X can influence Y via Z but if and only if Z is not
observed.

P(X, Y|Z) = P(X, Y, Z)
P(Z) =

P(Y|Z)P(X|Z)P(Z)
P(Z) = P(Y|Z)P(X|Z)

7

Factorisation of Joint Probability Density and Independence

Common cause

Test Difficulty Time Spent Studying

Grade

Letter of Recommendation

Exhaustion

If we know the student is exhausted, then they probably spent a lot
of time studying and tend to score a higher grade.

However, if we know how much the student studied, knowing their
exhaustion does not tell us more about their grade.

8

Factorisation of Joint Probability Density and Independence

Common effect

Z

X Y

P(X, Y, Z) = P(Z|X, Y)P(Y)P(X)

1 x = sample (” X ” , d i s t . Normal (0 , 0 . 0 0 1))
2 y = sample (” Y ” , d i s t . Normal (0 , 0 . 0 0 1))
3 z = sample (” Z ” , d i s t . Normal (x+y , 0 . 0 0 1) , observed =??)

X can influence Y via Z but if and only if Z is
observed.

P(X, Y) =
∫
P(X, Y, Z)dZ

= P(X)P(Y)
∫
P(Z|X, Y)dZ = P(X)P(Y)

9

Factorisation of Joint Probability Density and Independence

Common effect

Test Difficulty Time Spent Studying

Grade

Letter of Recommendation

Exhaustion

If we know the grade is high, then a difficult test indicates a longer
time spent studying.

If we do not know the grade, then we cannot infer the time spent
studying from the test difficulty.

10

Recap

• Probabilistic programs can describe any probabilistic model
• Underlying models can be difficult to describe mathematically

• Unbounded number of random variables
• Stochastic branching
• Dynamic distributions allowed (non-static support)

• Efficient general-purpose inference is hard

11

Recap

• General-purpose inference algorithms exist
• importance sampling
• single-site MH
• Can be inefficient

• Imposing restrictions on the probabilistic program allows us to
optimise inference

• fixed, finite number of continuous variables
• gradient-based inference: HMC, ADVI
• Still work for a large class of models

12

Outlook

• We can optimise inference for individual models
• Custom Inference: manually exploit structure of model
• Data-Driven Inference: use observed data to improve proposals
• Probabilistic Programs as Proposals: convenient way to
customise inference

• Deep Probabilistic Programming: learning proposals (and
models) from data

13

Custom Inference

Infinite Mixture Models: Where single-site MH fails

• Number of clusters:
K ∼ Poisson(5)

• Probability of being in cluster k, pk:
p ∼ Dirichlet(1/K)

• Cluster centers, k = 0, . . . , K:
µxk ∼ Uniform(-3,3),
µyk ∼ Uniform(-3,3)

• Cluster spread, k = 0, . . . , K:
σ2k ∼ InverseGamma(1,1)

• Cluster membership, i = 1, . . . ,N:
zi ∼ Categorical(p)

• Observed data, , i = 1, . . . ,N:
xi ∼ Normal(µzi , σzi)

• Unbounded number of
random variables

• Discrete variables
• =⇒ no HMC / ADVI
• High-dimensional
• =⇒ no IS / LW
• but single-site MH is
applicable in principle

14

Data set

2 1 0 1 2

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

15

Ground truth

3 2 1 0 1 2 3

2

1

0

1

2

16

Single-site update

3 2 1 0 1 2 3

2

1

0

1

2

Updating the number of clusters K
• Adding clusters is easy: sample
new cluster center and deviation

• How can we remove the orange
cluster?

• Change K from 4 to 3 (single-site)
• Changes dimension of p (so
current p has 0 log-prob?)

• Fix: sample pk individually
• All memberships zi = 4 have
log-prob 0.

In theory, this update can happen, but is very low probability. All
zi = 4 have to be changed before setting K = 3.

17

Designing a Custom Inference Algorithm

In each iteration, we pick one type of move at random

1. Updating cluster centers µk and deviations σk
2. Reweighting clusters – updating p
3. Updating the memberships zi
4. Merging two randomly selected clusters.
5. Splitting one random cluster

18

Designing a Custom Inference Algorithm - 1

Updating cluster centers µk and deviations σk
We can simply do random walk Metropolis Hastings updates.

Slightly perturbing the current values.

19

Designing a Custom Inference Algorithm - 2

Reweighting clusters – updating p

Let nk be the number of data points allocated to cluster k.

We expect that
nk
N ≈ pk.

We can update p reflecting this relationship:

p ∼ Dirichlet(n1, . . . ,nK)

20

Designing a Custom Inference Algorithm - 3

Updating the memberships zi

3 2 1 0 1 2 3

2

1

0

1

2

w̃k := N (xi;µk, σk) ∝ exp

(
− 1
2σk

(xi − µk)
⊤(xi − µk)

)
, wk :=

w̃k∑K
k=1 w̃k

zi ∼ Categorical(w1, . . . ,wk)

21

Designing a Custom Inference Algorithm - 4

Merging two randomly selected clusters

Choose two ”neighbouring” clusters with weights pi, means µi and
deviations σi at random, such that

∥µ1 − µ2∥2 ≤ ∥µ1 − µj∥2, for j = 1, . . . , K.

Match moments for isotropic Normals of dimension d:

p∗ = p1 + p2 (1)
p∗µ∗ = p1µ1 + p2µ2 (2)

p∗(µ⊤
∗ µ∗ + dσ2∗) = p1(µ⊤

1 µ1 + dσ21) + p2(µ⊤
2 µ2 + dσ22) (3)

and update memberships zi.

22

Designing a Custom Inference Algorithm - 4

Merging two randomly selected clusters

3 2 1 0 1 2 3 4

2

1

0

1

2

Merge red and green cluster to orange.

23

Designing a Custom Inference Algorithm - 5

Splitting one random cluster

Select cluster at random with weight p∗, mean µ∗ and deviation σ∗.

Draw auxiliary variables:
u1 ∼ Beta(2, 2), u2 ∼ Dirichlet(2, . . . , 2) ∈ Rd, u3 ∼ Beta(1, 1)

w1 = w∗u1, (4)
w2 = w∗(1− u1) (5)

µ1 = µ∗ − u2σ∗

√
dw2w1

(6)

µ2 = µ∗ + u2σ∗

√
dw1w2

(7)

σ1 = u3(1− u⊤2 u2)σ2∗
w∗

w1
(8)

σ2 = (1− u3)(1− u⊤2 u2)σ2∗
w∗

w2
(9)

These variables satisfy equations (1) - (3). Thus, merging the two
randomly created clusters results in the original cluster (p∗, µ∗, σ∗). 24

Designing a Custom Inference Algorithm - Results

25

Designing a Custom Inference Algorithm

• In the proposal, we make use of auxiliary random variables
• This makes computing the acceptance probability non-trivial
• It is key to be able to ”undo” moves, e.g. merge – join
• This is called reversible-jump MCMC
• It is a special case of involutive MCMC
• More details in: On Bayesian Analysis of Mixtures with an
Unknown Number of Components (with discussion)
https://academic.oup.com/jrsssb/article-pdf/59/
4/731/49588858/jrsssb_59_4_731.pdf

26

https://academic.oup.com/jrsssb/article-pdf/59/4/731/49588858/jrsssb_59_4_731.pdf
https://academic.oup.com/jrsssb/article-pdf/59/4/731/49588858/jrsssb_59_4_731.pdf

Data-Driven Inference

Data-Driven Proposals = Biased Inference?

• It is often good practice to chose uninformative priors, i.e. we do
not prefer any values for the latent variables a-priori

• However, with the proposals, we want to stir inference towards
high probability areas of the posterior

• We can use the observed data to construct proposals as close
to the posterior as possible

27

Data-Driven Proposals

However, to ensure convergence to the true posterior proposals have
to satisfy following properties:

• Unconditional proposals Q(x): if a state x is possible according
to the model P(x) > 0, then it has to be possible according to
the proposal Q(x) > 0

• Conditional proposals Q(x′|x): any state should be reachable
from any other state in any number of steps less or equal to a
fixed number N.

28

Data-Driven Inference

Common strategy:

One way of constructing data-driven proposals is to use a heuristic
to estimate the mode of the target distribution (or one of its
conditional distributions) and to sample values near the estimate of
the mode, but with noise added.

With enough data:
mode of posterior ≈ maximum likelihood estimator

29

Data-Driven Inference

Linear regression:
propose from prior

1 0 1

10

5

0

5

10

15

2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

30

Data-Driven Inference

Linear regression: propose from Normals centered at ordinary least
squares (OLS) solution

1 0 1
6

4

2

0

2

4

2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

31

Data-Driven Inference

GMM:
Sample number of clusters K ∼ Poisson(5)
Run k-means clustering and perturb the result.

32

Probabilistic Programs as
Proposals

Probabilistic Programs as Proposals

As proposals get more complex it is more convenient to write them
programmatically.

Key idea: We can write a probabilistic program and use it for
generating proposal in the inference for another program.

These programs are called guides.

Gen (and Pyro): programmable inference

33

Example: Polynomial Regression in Gen.jl

1.5 1.0 0.5 0.0 0.5 1.0 1.5
2

1

0

1

2

3

4

1.5 1.0 0.5 0.0 0.5 1.0 1.5
3

2

1

0

1

2

3

4

5

1.5 1.0 0.5 0.0 0.5 1.0 1.5
2

0

2

4

6

8

10

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2

0

2

4

6

8

1.5 1.0 0.5 0.0 0.5 1.0 1.5
2

1

0

1

2

3

4

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1500

1000

500

0

500

1000

1500

34

Example: Polynomial Regression in Gen.jl

1 @gen funct ion poly_model (x_coordinates)
2 degree ~ uni form_discrete (0 , 4)
3 var ~ inv_gamma (1 , 1)
4 c o e f f i c i e n t s = [({ (: c , i) } ~ normal (0 , 1)) fo r i in 0 : degree]
5 fo r i = 1 : length (x_coordinates)
6 x = x_coordinates [i]
7 mu = ’ c o e f f i c i e n t s * x . ^ (0 : degree)
8 { (: y , i) } ~ normal (mu, sqr t (var))
9 end
10 end

1 @gen funct ion poly_proposal_pr ior (x_coordinates)
2 degree ~ uni form_discrete (0 , 4)
3 var ~ inv_gamma (1 , 1)
4 c o e f f i c i e n t s = [({ (: c , i) } ~ normal (0 , 1)) fo r i in 0 : degree]
5 end

35

Example: Polynomial Regression in Gen.jl

Idea: Iteratively sampling coefficients.

We have currently polynomial of 2nd degree.

1.0 0.5 0.0 0.5 1.0
2

0

2

4

6

current: a + bx + cx2

1.0 0.5 0.0 0.5 1.0
2

0

2

4

6

8

10

fit dx3 + ex4 to residuals

Sample value centered around OLS solution for d.

36

Example: Polynomial Regression in Gen.jl

1 @gen funct ion poly_proposal_data_driven (x_coords , y_coords)
2 # noise fo r each coe f f i c i e n t
3 sca les = [0 . 3 9 5 , 0 . 2 4 2 , 0 .088 , 0 .020 , 0 . 00 7]
4 n = length (x_coords)
5 degree ~ uni form_discrete (0 , 4)
6 coe f f s = [NaN fo r i in 0 : degree]
7 predicted = zeros (n)
8 fo r i in 0 : degree
9 res idua l s = y_coords . − predicted # elementwise subt rac t ion
10 # f i t a polynomial to res idua l s with c o e f f i c i e n t s 0 . . i −1 f i x ed to zero
11 es t_coe f f s = least_squares (x_coords , res iduals , degree , min_degree= i)
12 coe f f s [i + 1] = ({ (: c , i) } ~ cauchy (es t_coe f f s [1] , sca les [i + 1]))
13 predicted = [dot (coef fs , x . ^ (0 : i)) f o r x in x_coords]
14 end
15 # use var iance of res idua l s to get est imate fo r model noise
16 res idua l s = y_coords . − predicted
17 var ~ inv_gamma (1 + n/2 , 1 + 0 . 5 * dot (res iduals , r es idua l s))
18 end

37

Example: Polynomial Regression in Gen.jl

Estimate for the probability of degree = 3

38

Deep Probabilistic Programming

Deep Probabilistic Programming: Motivation

• Non-programmability: For many data modalities that are
commonly considered in ML and AI, including images and
natural language, it is near-impossible to fully specify a
probabilistic program that defines a sufficiently realistic
distribution over data.

• Scalability: Models in ML and AI are routinely trained on very
large datasets. Most inference methods that we have
considered so far do not scale to such large datasets without
additional modifications.

• These challenges can be addressed by combining inference
methods from probabilistic programming with differentiable
programming techniques from deep learning research.

39

Deep Probabilistic Programming: Non-programmability

Non-programmability:

How to implement a probabilistic program that generates 28×28 px
images of hand-written digits?

Sample digit ∼ DiscreteUniform(0, 9),

and then ... ??
40

Deep Probabilistic Programming: Neural Networks

• Neural networks are universal function approximators
• Use neural network ηλ with parameters λ in the program to
flexibly model relationship between latents and observes

• latent: digit; observed: image
• image[x,y] ∼ Bernoulli(ηλ(digit)[x, y])
• probability of pixel being white ∼= gray scale value
• Learn λ to fit our data set

41

Deep Probabilistic Programming: Neural Networks

How to learn λ (model parameters)?

• Fully Bayesian treatment: λ are additional latent variables, set
prior P(λ) and take maximum a-posteriori (MAP)

argmaxλ P(λ|x1, . . . , xn)?
• → Bayesian deep learning
• Challenges: very high-dimensional posterior + choice of prior
• Instead maximise marginal likelihood of training data

argmaxλ P(x1, . . . , xn|λ)
• → Maximum likelihood estimation (MLE)
• When there is a lot of data, the likelihood P(X|λ) numerically
dominates the prior P(λ) so effectively that the prior can be
ignored (formally: Bernstein von Mises theorem)

• MLE ≈ MAP if we have a lot of data

42

Deep Probabilistic Programming: MLE

Find MLE of λ with stochastic gradient ascent

∇λ log P(X|λ) = EΘ∼P(.|X,λ) [∇λ log P(X,Θ|λ)]

because

Eθ∼P(.|X,λ) [∇λ log P(X, θ|λ)]
= Eθ∼P(.|X,λ) [∇λ log P(X|λ) +∇λ log P(θ|X, λ)]
= ∇λ log P(X|λ) + Eθ∼P(.|X,λ) [∇λ log P(θ|X, λ)]︸ ︷︷ ︸

=0

How to compute Eθ∼P(.|X,λ) [∇λ log P(X, θ|λ)]?

Bayesian inference!

43

Deep Probabilistic Programming

• We do not only want to learn the model parameters
• We also want to perform posterior inference over latent
variables

• E.g. what is the digit of an unlabeled image?
• How to combine model learning and posterior inference?

44

Deep Probabilistic Programming

Variational guide programs

• If we cannot fully specify the model, then we probably also want
to specify the proposals with neural networks ηϕ.

• E.g. mapping images to their digit.
• Thus, we write a variational proposal distribution as a guide
program.

• As in ADVI, we can differentiate through the neural networks and
maximise the ELBO to minimise the KL-divergence.

45

Deep Probabilistic Programming

Scalability: Amortised Inference

Instead of learning N variational distributions separately like in ADVI
with mean-field approximation,

Q(θi|xi, ϕ) = Q(θi|ϕi),

we use the neural network ηϕ to predict the variational parameters
for each observation xi,

Q(θi|xi, ϕ) = Q(θi|ηϕ(xi)).

E.g. for N images of hand-written digits xi:
Learning N separate distributions over the true latent digits θi of xi
versus learning to predict the digit of each image ηϕ(xi) and then
build a distribution around it.

46

Deep Probabilistic Programming

Combining model learning and posterior inference

• Maximising the ELBO w.r.t to ϕ and λ

ELBO(X;λ, ϕ) = Eθ∼Q(.|ϕ) [log P(θ, X|λ)− logQ(θ|ϕ)]
= log P(X|λ)− DKL(Q(Θ|ϕ) ∥ P(Θ|X, λ))

• Justification: assume we have variational distribution with an
”infinity capacity” (it can fit every distribution perfectly), then

min
ϕ
DKL(Q(Θ|ϕ) ∥ P(Θ|X, λ)) = 0 and max

ϕ
ELBO(X;λ, ϕ) = log P(X|λ)

• Thus, maximising the ELBO w.r.t to ϕ and λ is equivalent to
maximum likelihood estimation,

max
λ

max
ϕ
ELBO(X;λ, ϕ) = max

λ
log P(X|λ)

47

Deep Probabilistic Programming

Maximising the ELBO w.r.t to ϕ and λ

max
λ

max
ϕ
ELBO(X;λ, ϕ) = max

λ
log P(X|λ)

• In practice, we will not have an infinite capacity variational
distribution, and we will typically not fully solve the inner
optimization problem for ϕ at every gradient step for λ.

• We take gradient steps in both λ and ϕ space simultaneously so
that the guide and model play chase, with the guide tracking a
moving posterior log P(Θ|X, λ).

• There will be a difference between maximizing the ELBO and
maximizing the marginal likelihood. This difference manifests
itself as an extra term in the gradient

∇λELBO(X;λ, ϕ) = ∇λ log P(X|λ) +∇λDKL(Q(Θ|ϕ) ∥ P(Θ|X, λ))

48

Deep Probabilistic Programming

Maximising the ELBO w.r.t to ϕ and λ

∇λELBO(X;λ, ϕ) = ∇λ log P(X|λ) +∇λDKL(Q(Θ|ϕ) ∥ P(Θ|X, λ))

In this gradient, the second term prevents gradient updates to λ

from making changes to the model that strongly increase the KL
relative to the variational approximation. This is sometimes argued
to be beneficial, in the sense that it acts as a form of regularization
that prevents overfitting in the generative model, or in the sense
that it stabilizes the optimizer. However, it can also lead to
approximation errors in the learned generative model.

Optimizing the ELBO will balance maximizing log P(X|λ) against
minimizing DKL(Q(Θ|ϕ) ∥ P(Θ|X, λ)). This can be seen as a bias
towards learned P(Θ|X, λ)) that are ”compatible” with performing
variational inference in using the variational family Q(Θ|ϕ).

49

Deep Probabilistic Programming

Maximising the ELBO w.r.t to ϕ and λ - Computing Gradients

As
ELBO(X;λ, ϕ) = Eθ∼Q(.|ϕ) [log P(X, θ|λ)− logQ(θ|ϕ)]

is an expectation w.r.t to Q(.|ϕ), we can pull ∇ϕ inside the
expectation if we can apply the reparametrisation trick as in ADVI.
This allows us to use unbiased lower-variance Monte-Carlo estimates
for the gradient.

∇λ can always be pulled inside the expectation.

50

Deep Probabilistic Programming - Example

Semi-Supervised Variational Auto-Encoders (SSVAE) in Pyro

Objective: Learn generative distribution of hand-written digits and
be able to predict the digit of unlabeled images.

Only a fraction of the images are assumed to be labeled.

51

Deep Probabilistic Programming - SSVAE

1 # observat ion l i k e l i hood p (x | z)
2 c lass Decoder (nn . Module) :
3 def __ in i t __ (se l f , input_dim , output_dim , hidden_dims) :
4 super () . _ _ in i t __ ()
5 s e l f . f c 1 = nn . L inear (input_dim , hidden_dims [0])
6 s e l f . f c 2 = nn . L inear (hidden_dims [0] , hidden_dims [1])
7 s e l f . f c 3 = nn . L inear (hidden_dims [1] , output_dim)
8
9 s e l f . so f tp lus = nn . Sof tp lus ()
10
11 def forward (se l f , z) :
12 z = s e l f . so f tp lus (s e l f . f c 1 (z))
13 z = s e l f . so f tp lus (s e l f . f c 2 (z))
14 loc_img = torch . sigmoid (s e l f . f c 3 (z))
15 return loc_img # p robab i l i t i e s of p i x e l s being white

52

Deep Probabilistic Programming - SSVAE

1 def model (se l f , x , y=None) :
2 pyro . module (” decoder ” , s e l f . decoder)
3 with pyro . p la te (” data ” , x . shape [0]) :
4 # setup hyperparameters fo r p r i o r p (z)
5 z_ loc = torch . zeros (x . shape [0] , s e l f . z_dim)
6 z_sca le = torch . ones (x . shape [0] , s e l f . z_dim)
7 # sample from pr io r p (z)
8 z = pyro . sample (” l a t en t ” , d i s t . Normal (z_loc , z_sca le) . to_event (1))
9 # setup hyperparameters fo r p r i o r p (y)
10 alpha = torch . f u l l (x . shape [0] , 1/ s e l f . output_s i ze)
11 # sample from pr io r p (y)
12 y = pyro . sample (” y ” , d i s t . OneHotCategorical (alpha) , obs=y)
13 # sample from p (x | y , z)
14 loc_img = s e l f . decoder . forward (s e l f . concat . forward (z , y))
15 # sample image
16 pyro . sample (
17 ” obs ” ,
18 d i s t . Be rnou l l i (loc_img , va l ida te_a rgs = False) . to_event (1) ,
19 obs=x ,
20)
21 return loc_img

53

Deep Probabilistic Programming - SSVAE

1 # diagonal gaussian d i s t r i b u t i on q (z | x , y)
2 c lass EncoderZ (nn . Module) :
3 def __ in i t __ (se l f , input_dim , output_dim , hidden_dims) :
4 super () . _ _ in i t __ ()
5 s e l f . input_dim = input_dim
6
7 s e l f . f c 1 = nn . L inear (input_dim , hidden_dims [1])
8 s e l f . f c 2 = nn . L inear (hidden_dims [1] , hidden_dims [0])
9
10 # two heads fo r mean and std
11 s e l f . f c 3 1 = nn . L inear (hidden_dims [0] , output_dim)
12 s e l f . f c32 = nn . L inear (hidden_dims [0] , output_dim)
13
14 s e l f . so f tp lus = nn . Sof tp lus ()
15
16 def forward (se l f , x) :
17 x = s e l f . so f tp lus (s e l f . f c 1 (x))
18 x = s e l f . so f tp lus (s e l f . f c 2 (x))
19
20 z_ loc = s e l f . f c 3 1 (x)
21 z_sca le = torch . exp (s e l f . f c32 (x))
22 return z_loc , z_sca le

54

Deep Probabilistic Programming - SSVAE

1 # diagonal gaussian d i s t r i b u t i on q (y | x)
2 c lass EncoderY (nn . Module) :
3 def __ in i t __ (se l f , input_dim , output_dim , hidden_dims) :
4 super () . _ _ in i t __ ()
5 s e l f . input_dim = input_dim
6
7 s e l f . f c 1 = nn . L inear (input_dim , hidden_dims [1])
8 s e l f . f c 2 = nn . L inear (hidden_dims [1] , hidden_dims [0])
9 s e l f . f c 3 = nn . L inear (hidden_dims [0] , output_dim)
10
11 s e l f . so f tp lus = nn . Sof tp lus ()
12 s e l f . softmax = nn . Softmax (dim =1)
13
14 def forward (se l f , x) :
15 x = s e l f . so f tp lus (s e l f . f c 1 (x))
16 x = s e l f . so f tp lus (s e l f . f c 2 (x))
17
18 y = s e l f . softmax (s e l f . f c 3 (x)) # returns c lass p r obab i l i t i e s
19 return y

55

Deep Probabilistic Programming - SSVAE

1 # def ine the guide (v a r i a t i ona l d i s t r i bu t i on) q (z | x , y) q (y | x)
2 def guide (se l f , x , y=None) :
3 pyro . module (” encoder_z ” , s e l f . encoder_z)
4 pyro . module (” encoder_y ” , s e l f . encoder_y)
5 with pyro . p la te (” data ” , x . shape [0]) :
6 i f y i s None :
7 # use the encoder to get the parameters used to def ine q (y | x)
8 alpha = s e l f . encoder_y . forward (x)
9 # sample q (y | x)
10 y = pyro . sample (” y ” , d i s t . OneHotCategorical (alpha))
11
12 # amortised inference
13 # use the encoder to get the parameters used to def ine q (z | x , y)
14 z_loc , z_sca le = s e l f . encoder_z . forward (s e l f . concat . forward (x , y))
15
16 # sample q (z | x , y)
17 z = pyro . sample (” l a t en t ” , d i s t . Normal (z_loc , z_sca le) . to_event (1))

56

Deep Probabilistic Programming - SSVAE

1 # a u x i l i a r y model
2 def model_c lass i fy (se l f , x , y) :
3 pyro . module (” encoder_y ” , s e l f . encoder_y)
4 asser t y i s not None
5 with pyro . p la te (” data ” , x . shape [0]) :
6 alpha = s e l f . encoder_y . forward (x)
7 with pyro . poutine . sca le (sca le = s e l f . aux_ loss_mul t ip l i e r) :
8 pyro . sample (” y_aux ” , d i s t . OneHotCategorical (alpha) , obs=y)
9
10 def gu ide_c l a s s i f y (se l f , x , y=None) :
11 pass

57

Deep Probabilistic Programming - SSVAE

1 fo r epoch in range (1 , epochs + 1) :
2 # perform sv i steps on t r a i n loader
3 epoch_loss = 0 .0
4 # batches are not shuf f led
5 fo r i , (x , y) in enumerate (loaders [’ t r a i n ’]) :
6 x = x . reshape (− 1 , ssvae . input_s i ze) . to (device)
7
8 # a l te rna te between supervised and unsupervised batches
9 i f nth_supervised and (i % nth_supervised == 0) :
10 y = F . one_hot (y , ssvae . output_s i ze) . to (device)
11
12 # perform step on au x i l i a r y model
13 i f aux_loss :
14 epoch_loss += sv i_aux . step (x , y)
15 else :
16 y = None
17
18 epoch_loss += s v i . step (x , y)

58

Deep Probabilistic Programming - SSVAE

ELBO + classification accuracy for data set with 10% labeled

0 20 40 60 80 100
Epoch

100

120

140

160

180

200

220

240

EL
BO

ELBO train
ELBO test

0 20 40 60 80 100
Epoch

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

Ac
cu

ra
cy

Test accuracy

59

Deep Probabilistic Programming - SSVAE

Newly generated digits

60

Resources

Probabilistic Graphical Models - D Koller, N Friedman - 2009:
Chapter 2.1.4 and 3

Paper: On Bayesian Analysis of Mixtures with an Unknown Number of
Components (with discussion)
https://academic.oup.com/jrsssb/article-pdf/59/4/
731/49588858/jrsssb_59_4_731.pdf
RJMCMC / Involutive MCMC in Gen Tutorial
https://www.gen.dev/tutorials/rj/tutorial
Paper: Transforming Worlds: Automated Involutive MCMC for
Open-Universe Probabilistic Models
https://people.eecs.berkeley.edu/~russell/papers/
aabi21-oupm.pdf
Data-Driven Proposals in Gen Tutorial
https://www.gen.dev/tutorials/
data-driven-proposals/tutorial 61

https://academic.oup.com/jrsssb/article-pdf/59/4/731/49588858/jrsssb_59_4_731.pdf
https://academic.oup.com/jrsssb/article-pdf/59/4/731/49588858/jrsssb_59_4_731.pdf
https://www.gen.dev/tutorials/rj/tutorial
https://people.eecs.berkeley.edu/~russell/papers/aabi21-oupm.pdf
https://people.eecs.berkeley.edu/~russell/papers/aabi21-oupm.pdf
https://www.gen.dev/tutorials/data-driven-proposals/tutorial
https://www.gen.dev/tutorials/data-driven-proposals/tutorial

Resources

Paper: Using probabilistic programs as proposals
https://arxiv.org/pdf/1801.03612.pdf
Paper: Pyro: Deep Universal Probabilistic Programming
https://arxiv.org/pdf/1810.09538.pdf
An Introduction to Probabilistic Programming: Chapter 8 Deep
Probabilistic Programming
https://arxiv.org/pdf/1809.10756.pdf
Pyro ELBO Gradients Estimators
https://pyro.ai/examples/svi_part_iii.html
Paper: Auto-Encoding Variational Bayes
https://arxiv.org/pdf/1312.6114.pdf
Pyro Semi-Supervised Variational Auto-Encoder
https://pyro.ai/examples/ss-vae.html

62

https://arxiv.org/pdf/1801.03612.pdf
https://arxiv.org/pdf/1810.09538.pdf
https://arxiv.org/pdf/1809.10756.pdf
https://pyro.ai/examples/svi_part_iii.html
https://arxiv.org/pdf/1312.6114.pdf
https://pyro.ai/examples/ss-vae.html

Organisation

• Last Lecture: Guest lecture, date TBD
• 13.12. A4 Deadline
• 13.12. Project Proposal Deadline
• 20.12. Assignment Discussion Session
• 31.01. Project Presentations

63

	Factorisation of Joint Probability Density and Independence
	Custom Inference
	Data-Driven Inference
	Probabilistic Programs as Proposals
	Deep Probabilistic Programming

