Probabilistic Programming and AI: Lecture 5

Advanced Topics in Probabilistic Programming

Markus Böck and Jürgen Cito
Research Unit of Software Engineering

Table of contents

1. Factorisation of Joint Probability Density and Independence
2. Custom Inference
3. Data-Driven Inference
4. Probabilistic Programs as Proposals
5. Deep Probabilistic Programming

Factorisation of Joint Probability
Density and Independence

Factorisation of Joint Probability Density and Independence

Factorisation of Joint Probability Density and Independence
X is independent of Y, if

$$
P(X, Y)=P(X) P(Y) .
$$

X is conditionally independent of Y given Z, if

$$
P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z) .
$$

The density of a probabilistic program (model) always consists of factors (generally depending on multiple variables).

To check if two random variables are independent, we have to check which variables contribute to which factor.

Probabilistic Graphical Models - Koller, Friedman: Chapter 2.1.4 and 3

Factorisation of Joint Probability Density and Independence

Indirect causal effect

$$
P(X, Y, Z)=P(Y \mid Z) P(Z \mid X) P(X)
$$

Get intuition by considering "almost deterministic" models.


```
X = sample("X", dist.Normal(0, 0.001))
z = sample("Z", dist.Normal(x + 1, 0.001), observed=??)
y = sample("Y", dist.Normal(z + 1, 0.001))
```

X cannot influence Y via Z if Z is observed.

$$
\begin{aligned}
P(X, Y \mid Z) & =\frac{P(X, Y, Z)}{P(Z)}=\frac{P(Y \mid Z) P(Z \mid X) P(X)}{P(Z)} \\
& =P(Y \mid Z) \frac{P(X, Z)}{P(Z)}=P(Y \mid Z) P(X \mid Z)
\end{aligned}
$$

Factorisation of Joint Probability Density and Independence

Indirect causal effect

If we know the grade, the test difficulty or time spent studying does not influence the letter of recommendation anymore.

Factorisation of Joint Probability Density and Independence

Indirect evidential effect

$$
P(X, Y, Z)=P(X \mid Z) P(Z \mid Y) P(Y)
$$


```
y = sample("Y", dist.Normal(0, 0.001))
z = sample("Z", dist.Normal(y + 1, 0.001), observed=??)
X = sample("X", dist.Normal(z + 1, 0.001))
```

X can influence Y via Z but only if Z is not observed.

$$
\text { as before } \quad P(X, Y \mid Z)=P(Y \mid Z) P(X \mid Z)
$$

Factorisation of Joint Probability Density and Independence

Indirect evidential effect

If we know the grade, the letter of recommendation gives no information about the test difficulty or time spent studying.

Factorisation of Joint Probability Density and Independence

Common cause

$$
P(X, Y, Z)=P(Y \mid Z) P(X \mid Z) P(Z)
$$

$$
z=\text { sample("Z", dist.Normal(0, 0.001), observed=??) }
$$

$$
x=\text { sample }(" X ", \text { dist. } \operatorname{Normal}(z, 0.001))
$$

$y=$ sample("Y", dist.Normal(z, 0.001))
X can influence Y via Z but if and only if Z is not observed.

$$
P(X, Y \mid Z)=\frac{P(X, Y, Z)}{P(Z)}=\frac{P(Y \mid Z) P(X \mid Z) P(Z)}{P(Z)}=P(Y \mid Z) P(X \mid Z)
$$

Factorisation of Joint Probability Density and Independence

Common cause

If we know the student is exhausted, then they probably spent a lot of time studying and tend to score a higher grade.

However, if we know how much the student studied, knowing their exhaustion does not tell us more about their grade.

Factorisation of Joint Probability Density and Independence

Common effect

$$
\begin{aligned}
& \qquad P(X, Y, Z)=P(Z \mid X, Y) P(Y) P(X) \\
& x=\text { sample }(" X \text { ", dist. Normal(} 0,0.001)) \\
& y=\text { sample(" } Y \text { ", dist. Normal(} 0,0.001)) \\
& z=\text { sample("Z", dist.Normal }(x+y, 0.001), \text { observed=??) }
\end{aligned}
$$

X can influence Y via Z but if and only if Z is observed.

$$
\begin{aligned}
P(X, Y) & =\int P(X, Y, Z) d Z \\
& =P(X) P(Y) \int P(Z \mid X, Y) d Z=P(X) P(Y)
\end{aligned}
$$

Factorisation of Joint Probability Density and Independence

Common effect

If we know the grade is high, then a difficult test indicates a longer time spent studying.

If we do not know the grade, then we cannot infer the time spent studying from the test difficulty.

Recap

- Probabilistic programs can describe any probabilistic model
- Underlying models can be difficult to describe mathematically
- Unbounded number of random variables
- Stochastic branching
- Dynamic distributions allowed (non-static support)
- Efficient general-purpose inference is hard

Recap

- General-purpose inference algorithms exist
- importance sampling
- single-site MH
- Can be inefficient
- Imposing restrictions on the probabilistic program allows us to optimise inference
- fixed, finite number of continuous variables
- gradient-based inference: HMC, ADVI
- Still work for a large class of models

Outlook

- We can optimise inference for individual models
- Custom Inference: manually exploit structure of model
- Data-Driven Inference: use observed data to improve proposals
- Probabilistic Programs as Proposals: convenient way to customise inference
- Deep Probabilistic Programming: learning proposals (and models) from data

Custom Inference

Infinite Mixture Models: Where single-site MH fails

- Number of clusters:

$$
K \sim \text { Poisson(5) }
$$

- Probability of being in cluster k, p_{k} :

$$
p \sim \operatorname{Dirichlet}(1 / K)
$$

- Cluster centers, $k=0, \ldots, K$:
$\mu_{k}^{\times} \sim$ Uniform(-3,3),
$\mu_{k}^{y} \sim$ Uniform (-3,3)
- Cluster spread, $k=0, \ldots, K$:

$$
\sigma_{k}^{2} \sim \text { InverseGamma(1,1) }
$$

- Cluster membership, $i=1, \ldots, N$: $z_{i} \sim$ Categorical(p)
- Observed data, , $i=1, \ldots, N$:

$$
x_{i} \sim \operatorname{Normal}\left(\mu_{z_{i}}, \sigma_{z_{i}}\right)
$$

- Unbounded number of random variables
- Discrete variables
- \Longrightarrow no HMC / ADVI
- High-dimensional
- \Longrightarrow no IS / LW
- but single-site MH is applicable in principle

Data set

Ground truth

Single-site update

Updating the number of clusters K

- Adding clusters is easy: sample new cluster center and deviation

- How can we remove the orange cluster?
- Change K from 4 to 3 (single-site)
- Changes dimension of p (so current p has 0 log-prob?)
- Fix: sample p_{k} individually
- All memberships $z_{i}=4$ have log-prob 0.
In theory, this update can happen, but is very low probability. All $z_{i}=4$ have to be changed before setting $K=3$.

Designing a Custom Inference Algorithm

In each iteration, we pick one type of move at random

1. Updating cluster centers μ_{k} and deviations σ_{k}
2. Reweighting clusters - updating p
3. Updating the memberships z_{i}
4. Merging two randomly selected clusters.
5. Splitting one random cluster

Designing a Custom Inference Algorithm - 1

Updating cluster centers μ_{k} and deviations σ_{k}
We can simply do random walk Metropolis Hastings updates.
Slightly perturbing the current values.

Designing a Custom Inference Algorithm - 2

Reweighting clusters - updating p
Let n_{k} be the number of data points allocated to cluster k.
We expect that

$$
\frac{n_{k}}{N} \approx p_{k} .
$$

We can update p reflecting this relationship:

$$
p \sim \operatorname{Dirichlet}\left(n_{1}, \ldots, n_{K}\right)
$$

Designing a Custom Inference Algorithm - 3

Updating the memberships z_{i}

$$
\begin{aligned}
& \tilde{w}_{k}:=\mathcal{N}\left(x_{i} ; \mu_{k}, \sigma_{k}\right) \propto \exp \left(-\frac{1}{2 \sigma_{k}}\left(x_{i}-\mu_{k}\right)^{\top}\left(x_{i}-\mu_{k}\right)\right), \quad w_{k}:=\frac{\tilde{w}_{k}}{\sum_{k=1}^{K} \tilde{w}_{k}} \\
& z_{i} \sim \operatorname{Categorical}\left(w_{1}, \ldots, w_{k}\right)
\end{aligned}
$$

Designing a Custom Inference Algorithm - 4

Merging two randomly selected clusters
Choose two "neighbouring" clusters with weights p_{i}, means μ_{i} and deviations σ_{i} at random, such that

$$
\left\|\mu_{1}-\mu_{2}\right\|_{2} \leq\left\|\mu_{1}-\mu_{j}\right\|_{2}, \quad \text { for } j=1, \ldots, K
$$

Match moments for isotropic Normals of dimension d :

$$
\begin{align*}
p_{*} & =p_{1}+p_{2} \tag{1}\\
p_{*} \mu_{*} & =p_{1} \mu_{1}+p_{2} \mu_{2} \tag{2}\\
p_{*}\left(\mu_{*}^{\top} \mu_{*}+d \sigma_{*}^{2}\right) & =p_{1}\left(\mu_{1}^{\top} \mu_{1}+d \sigma_{1}^{2}\right)+p_{2}\left(\mu_{2}^{\top} \mu_{2}+d \sigma_{2}^{2}\right) \tag{3}
\end{align*}
$$

and update memberships z_{i}.

Designing a Custom Inference Algorithm - 4

Merging two randomly selected clusters

Merge red and green cluster to orange.

Designing a Custom Inference Algorithm - 5

Splitting one random cluster
Select cluster at random with weight p_{*}, mean μ_{*} and deviation σ_{*}.
Draw auxiliary variables:
$u_{1} \sim \operatorname{Beta}(2,2), u_{2} \sim \operatorname{Dirichlet}(2, \ldots, 2) \in \mathbb{R}^{d}, u_{3} \sim \operatorname{Beta}(1,1)$

$$
\begin{align*}
& w_{1}=w_{*} u_{1}, \tag{4}\\
& w_{2}=w_{*}\left(1-u_{1}\right) \tag{5}\\
& \mu_{1}=\mu_{*}-u_{2} \sigma_{*} \sqrt{d \frac{w_{2}}{w_{1}}} \tag{6}\\
& \mu_{2}=\mu_{*}+u_{2} \sigma_{*} \sqrt{d \frac{w_{1}}{w_{2}}} \tag{7}\\
& \sigma_{1}=u_{3}\left(1-u_{2}^{\top} u_{2}\right) \sigma_{*}^{2} \frac{w_{*}}{w_{1}} \tag{8}\\
& \sigma_{2}=\left(1-u_{3}\right)\left(1-u_{2}^{\top} u_{2}\right) \sigma_{*}^{2} \frac{w_{*}}{w_{2}} \tag{9}
\end{align*}
$$

These variables satisfy equations (1) - (3). Thus, merging the two randomly created clusters results in the original cluster $\left(p_{*}, \mu_{*}, \sigma_{*}\right)$.

Designing a Custom Inference Algorithm - Results

(b) Two Samples from the Inferred Posterior: Richardson \& Green's Data-driven MCMC (top), BLOG Ancestral Sampling (bottom)

Designing a Custom Inference Algorithm

- In the proposal, we make use of auxiliary random variables
- This makes computing the acceptance probability non-trivial
- It is key to be able to "undo" moves, e.g. merge - join
- This is called reversible-jump MCMC
- It is a special case of involutive MCMC
- More details in: On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) https://academic.oup.com/jrsssb/article-pdf/59/ 4/731/49588858/jrsssb_59_4_731.pdf

Data-Driven Inference

Data-Driven Proposals = Biased Inference?

- It is often good practice to chose uninformative priors, i.e. we do not prefer any values for the latent variables a-priori
- However, with the proposals, we want to stir inference towards high probability areas of the posterior
- We can use the observed data to construct proposals as close to the posterior as possible

Data-Driven Proposals

However, to ensure convergence to the true posterior proposals have to satisfy following properties:

- Unconditional proposals $Q(x)$: if a state x is possible according to the model $P(x)>0$, then it has to be possible according to the proposal $Q(x)>0$
- Conditional proposals $Q\left(x^{\prime} \mid x\right)$: any state should be reachable from any other state in any number of steps less or equal to a fixed number N.

Data-Driven Inference

Common strategy:
One way of constructing data-driven proposals is to use a heuristic to estimate the mode of the target distribution (or one of its conditional distributions) and to sample values near the estimate of the mode, but with noise added.

With enough data:
mode of posterior \approx maximum likelihood estimator

Data-Driven Inference

Linear regression:
propose from prior

Data-Driven Inference

Linear regression: propose from Normals centered at ordinary least squares (OLS) solution

Data-Driven Inference

GMM:
Sample number of clusters K ~ Poisson(5)
Run k-means clustering and perturb the result.

Different cluster analysis results on "mouse" data set:

Original Data

k-Means Clustering

EM Clustering

Probabilistic Programs as Proposals

Probabilistic Programs as Proposals

As proposals get more complex it is more convenient to write them programmatically.

Key idea: We can write a probabilistic program and use it for generating proposal in the inference for another program.

These programs are called guides.
Gen (and Pyro): programmable inference

Example: Polynomial Regression in Gen.jl

Example: Polynomial Regression in Gen.jl

```
@gen function poly_model(x_coordinates)
    degree ~ uniform_discrete(0,4)
    var ~ inv_gamma(1,1)
    coefficients = [({(:c,i)} ~ normal(0,1)) for i in 0:degree]
    for i=1:length(x_coordinates)
        x = x_coordinates[i]
        mu = 'coefficients * x.^(0:degree)
        {(:y,i)} ~ normal(mu, sqrt(var))
    end
end
@gen function poly_proposal_prior(x_coordinates)
    degree ~ uniform_discrete(0,4)
    var ~ inv_gamma(1,1)
    coefficients = [({(:c,i)} ~ normal(0,1)) for i in 0:degree]
end
```


Example: Polynomial Regression in Gen.jl

Idea: Iteratively sampling coefficients.
We have currently polynomial of 2nd degree.

Sample value centered around OLS solution for d.

Example: Polynomial Regression in Gen.jl

```
@gen function poly_proposal_data_driven(x_coords, y_coords)
    # noise for each coefficient
    scales = [0.395, 0.242, 0.088, 0.020, 0.007]
    n = length(x_coords)
    degree ~ uniform_discrete(0,4)
    coeffs = [NaN for i in 0:degree]
    predicted = zeros(n)
    for i in 0:degree
        residuals = y_coords . - predicted # elementwise subtraction
        # fit a polynomial to residuals with coefficients 0..i-1 fixed to zero
        est_coeffs = least_squares(x_coords, residuals, degree, min_degree=i)
        coeffs[i+1]=({(:c,i)} ~ cauchy(est_coeffs[1], scales[i+1]))
            predicted = [dot(coeffs, x.^(0:i)) for x in x_coords]
    end
    # use variance of residuals to get estimate for model noise
    residuals = y_coords . - predicted
    var ~ inv_gamma(1 + n/2, 1 + 0.5 * dot(residuals, residuals))
end
```


Example: Polynomial Regression in Gen.jl

Estimate for the probability of degree $=3$

(a) Estimates from self-normalized importance sampling with a prior proposal.

(b) Estimates from self-normalized importance sampling with a data-driven proposal.

Deep Probabilistic Programming

Deep Probabilistic Programming: Motivation

- Non-programmability: For many data modalities that are commonly considered in ML and AI, including images and natural language, it is near-impossible to fully specify a probabilistic program that defines a sufficiently realistic distribution over data.
- Scalability: Models in ML and AI are routinely trained on very large datasets. Most inference methods that we have considered so far do not scale to such large datasets without additional modifications.
- These challenges can be addressed by combining inference methods from probabilistic programming with differentiable programming techniques from deep learning research.

Deep Probabilistic Programming: Non-programmability

Non-programmability:
How to implement a probabilistic program that generates $28 \times 28 \mathrm{px}$ images of hand-written digits?

Sample digit ~ DiscreteUniform(0, 9), and then ... ??

Deep Probabilistic Programming: Neural Networks

- Neural networks are universal function approximators
- Use neural network η_{λ} with parameters λ in the program to flexibly model relationship between latents and observes
- latent: digit; observed: image
- image[x,y] ~ Bernoulli $\left(\eta_{\lambda}(\right.$ digit $\left.)[x, y]\right)$
- probability of pixel being white \cong gray scale value
- Learn λ to fit our data set

Deep Probabilistic Programming: Neural Networks

How to learn λ (model parameters)?

- Fully Bayesian treatment: λ are additional latent variables, set prior $P(\lambda)$ and take maximum a-posteriori (MAP)

$$
\operatorname{argmax}_{\lambda} P\left(\lambda \mid x_{1}, \ldots, x_{n}\right) ?
$$

\rightarrow Bayesian deep learning

- Challenges: very high-dimensional posterior + choice of prior
- Instead maximise marginal likelihood of training data

$$
\operatorname{argmax}_{\lambda} P\left(x_{1}, \ldots, x_{n} \mid \lambda\right)
$$

- \rightarrow Maximum likelihood estimation (MLE)
- When there is a lot of data, the likelihood $P(X \mid \lambda)$ numerically dominates the prior $P(\lambda)$ so effectively that the prior can be ignored (formally: Bernstein von Mises theorem)
- MLE \approx MAP if we have a lot of data

Deep Probabilistic Programming: MLE

Find MLE of λ with stochastic gradient ascent

$$
\nabla_{\lambda} \log P(X \mid \lambda)=\mathbb{E}_{\Theta \sim P(. \mid X, \lambda)}\left[\nabla_{\lambda} \log P(X, \Theta \mid \lambda)\right]
$$

because

$$
\begin{aligned}
& \mathbb{E}_{\theta \sim P(. \mid X, \lambda)}\left[\nabla_{\lambda} \log P(X, \theta \mid \lambda)\right] \\
= & \mathbb{E}_{\theta \sim P(. \mid X, \lambda)}\left[\nabla_{\lambda} \log P(X \mid \lambda)+\nabla_{\lambda} \log P(\theta \mid X, \lambda)\right] \\
= & \nabla_{\lambda} \log P(X \mid \lambda)+\underbrace{\mathbb{E}_{\theta \sim P(. \mid X, \lambda)}\left[\nabla_{\lambda} \log P(\theta \mid X, \lambda)\right]}_{=0}
\end{aligned}
$$

How to compute $\mathbb{E}_{\theta \sim P(. \mid X, \lambda)}\left[\nabla_{\lambda} \log P(X, \theta \mid \lambda)\right]$?
Bayesian inference!

Deep Probabilistic Programming

- We do not only want to learn the model parameters
- We also want to perform posterior inference over latent variables
- E.g. what is the digit of an unlabeled image?
- How to combine model learning and posterior inference?

Deep Probabilistic Programming

Variational guide programs

- If we cannot fully specify the model, then we probably also want to specify the proposals with neural networks η_{ϕ}.
- E.g. mapping images to their digit.
- Thus, we write a variational proposal distribution as a guide program.
- As in ADVI, we can differentiate through the neural networks and maximise the ELBO to minimise the KL-divergence.

Deep Probabilistic Programming

Scalability: Amortised Inference

Instead of learning N variational distributions separately like in ADVI with mean-field approximation,

$$
Q\left(\theta_{i} \mid x_{i}, \phi\right)=Q\left(\theta_{i} \mid \phi_{i}\right),
$$

we use the neural network η_{ϕ} to predict the variational parameters for each observation x_{i},

$$
Q\left(\theta_{i} \mid x_{i}, \phi\right)=Q\left(\theta_{i} \mid \eta_{\phi}\left(x_{i}\right)\right) .
$$

E.g. for N images of hand-written digits x_{i} :

Learning N separate distributions over the true latent digits θ_{i} of x_{i} versus learning to predict the digit of each image $\eta_{\phi}\left(x_{i}\right)$ and then build a distribution around it.

Deep Probabilistic Programming

Combining model learning and posterior inference

- Maximising the ELBO w.r.t to ϕ and λ

$$
\begin{aligned}
\operatorname{ELBO}(X ; \lambda, \phi) & =\mathbb{E}_{\theta \sim Q(\cdot \mid \phi)}[\log P(\theta, X \mid \lambda)-\log Q(\theta \mid \phi)] \\
& =\log P(X \mid \lambda)-D_{\text {KL }}(Q(\Theta \mid \phi) \| P(\Theta \mid X, \lambda))
\end{aligned}
$$

- Justification: assume we have variational distribution with an "infinity capacity" (it can fit every distribution perfectly), then

$$
\min _{\phi} D_{\mathrm{KL}}(Q(\Theta \mid \phi) \| P(\Theta \mid X, \lambda))=0 \text { and } \max _{\phi} \operatorname{ELBO}(X ; \lambda, \phi)=\log P(X \mid \lambda)
$$

- Thus, maximising the ELBO w.r.t to ϕ and λ is equivalent to maximum likelihood estimation,

$$
\max _{\lambda} \max _{\phi} \operatorname{ELBO}(X ; \lambda, \phi)=\max _{\lambda} \log P(X \mid \lambda)
$$

Deep Probabilistic Programming

Maximising the ELBO w.r.t to ϕ and λ

$$
\max _{\lambda} \max _{\phi} \operatorname{ELBO}(X ; \lambda, \phi)=\max _{\lambda} \log P(X \mid \lambda)
$$

- In practice, we will not have an infinite capacity variational distribution, and we will typically not fully solve the inner optimization problem for ϕ at every gradient step for λ.
- We take gradient steps in both λ and ϕ space simultaneously so that the guide and model play chase, with the guide tracking a moving posterior $\log P(\Theta \mid X, \lambda)$.
- There will be a difference between maximizing the ELBO and maximizing the marginal likelihood. This difference manifests itself as an extra term in the gradient

$$
\nabla_{\lambda} E L B O(X ; \lambda, \phi)=\nabla_{\lambda} \log P(X \mid \lambda)+\nabla_{\lambda} D_{\mathrm{KL}}(Q(\Theta \mid \phi) \| P(\Theta \mid X, \lambda))
$$

Deep Probabilistic Programming

Maximising the ELBO w.r.t to ϕ and λ

$$
\nabla_{\lambda} \operatorname{ELBO}(X ; \lambda, \phi)=\nabla_{\lambda} \log P(X \mid \lambda)+\nabla_{\lambda} D_{\mathrm{KL}}(Q(\Theta \mid \phi) \| P(\Theta \mid X, \lambda))
$$

In this gradient, the second term prevents gradient updates to λ from making changes to the model that strongly increase the KL relative to the variational approximation. This is sometimes argued to be beneficial, in the sense that it acts as a form of regularization that prevents overfitting in the generative model, or in the sense that it stabilizes the optimizer. However, it can also lead to approximation errors in the learned generative model.

Optimizing the ELBO will balance maximizing $\log P(X \mid \lambda)$ against minimizing $D_{\mathrm{KL}}(Q(\Theta \mid \phi) \| P(\Theta \mid X, \lambda))$. This can be seen as a bias towards learned $P(\Theta \mid X, \lambda)$) that are "compatible" with performing variational inference in using the variational family $Q(\Theta \mid \phi)$.

Deep Probabilistic Programming

Maximising the ELBO w.r.t to ϕ and λ - Computing Gradients As

$$
\operatorname{ELBO}(X ; \lambda, \phi)=\mathbb{E}_{\theta \sim Q(\cdot \mid \phi)}[\log P(X, \theta \mid \lambda)-\log Q(\theta \mid \phi)]
$$

is an expectation w.r.t to $Q(. \mid \phi)$, we can pull ∇_{ϕ} inside the expectation if we can apply the reparametrisation trick as in ADVI.
This allows us to use unbiased lower-variance Monte-Carlo estimates for the gradient.
∇_{λ} can always be pulled inside the expectation.

Deep Probabilistic Programming - Example

Semi-Supervised Variational Auto-Encoders (SSVAE) in Pyro

Objective: Learn generative distribution of hand-written digits and be able to predict the digit of unlabeled images.

Only a fraction of the images are assumed to be labeled.

Deep Probabilistic Programming - SSVAE

```
# observation likelihood p(x|z)
class Decoder(nn.Module):
    def __init__(self, input_dim, output_dim, hidden_dims):
        super().__init__()
        self.fc1 = nn.Linear(input_dim, hidden_dims[0])
        self.fc2 = nn.Linear(hidden_dims[0], hidden_dims[1])
        self.fc3 = nn.Linear(hidden_dims[1], output_dim)
        self.softplus = nn.Softplus()
    def forward(self, z):
        z = self.softplus(self.fc1(z))
        z = self.softplus(self.fc2(z))
        loc_img = torch.sigmoid(self.fc3(z))
        return loc_img # probabilities of pixels being white
```


Deep Probabilistic Programming - SSVAE

```
def model(self, x, y=None):
    pyro.module("decoder", self.decoder)
    with pyro.plate("data", x.shape[0]):
        # setup hyperparameters for prior p(z)
        z_loc = torch.zeros(x.shape[0], self.z_dim)
        z_scale = torch.ones(x.shape[0], self.z_dim)
        # sample from prior p(z)
        z = pyro.sample("latent", dist.Normal(z_loc, z_scale).to_event(1))
        # setup hyperparameters for prior p(y)
        alpha = torch.full(x.shape[0], 1/self.output_size)
        # sample from prior p(y)
        y = pyro.sample("y", dist.OneHotCategorical(alpha), obs=y)
    # sample from p(x|y,z)
    loc_img = self.decoder.forward(self.concat.forward(z, y))
    # sample image
    pyro.sample(
        "obs",
        dist.Bernoulli(loc_img, validate_args=False).to_event(1),
        obs=x,
    )
    return loc_img
```


Deep Probabilistic Programming - SSVAE

```
# diagonal gaussian distribution q(z|x,y)
class EncoderZ(nn.Module):
    def __init__(self, input_dim, output_dim, hidden_dims):
        super().__init__()
        self.input_dim = input_dim
        self.fc1 = nn.Linear(input_dim, hidden_dims[1])
        self.fc2 = nn.Linear(hidden_dims[1], hidden_dims[0])
        # two heads for mean and std
        self.fc31 = nn.Linear(hidden_dims[0], output_dim)
        self.fc32 = nn.Linear(hidden_dims[0], output_dim)
        self.softplus = nn.Softplus()
    def forward(self, x):
        x = self.softplus(self.fc1(x))
        x = self.softplus(self.fc2(x))
    z_loc = self.fc31(x)
    z_scale = torch.exp(self.fc32(x))
    return z_loc, z_scale
```


Deep Probabilistic Programming - SSVAE

```
# diagonal gaussian distribution q(y|x)
class EncoderY(nn.Module):
    def __init__(self, input_dim, output_dim, hidden_dims):
        super().__init__()
        self.input_dim = input_dim
        self.fc1 = nn.Linear(input_dim, hidden_dims[1])
        self.fc2 = nn.Linear(hidden_dims[1], hidden_dims[0])
        self.fc3 = nn.Linear(hidden_dims[0], output_dim)
        self.softplus = nn.Softplus()
        self.softmax = nn. Softmax(dim=1)
    def forward(self, x):
        x = self.softplus(self.fc1(x))
        x = self.softplus(self.fc2(x))
        y = self.softmax(self.fc3(x)) # returns class probabilities
        return y
```


Deep Probabilistic Programming - SSVAE

```
# define the guide (variational distribution) q(z|x,y) q(y|x)
def guide(self, x, y=None):
        pyro.module("encoder_z", self.encoder_z)
        pyro.module("encoder_y", self.encoder_y)
        with pyro.plate("data", x.shape[0]):
            if y is None:
                # use the encoder to get the parameters used to define q(y|x)
                alpha = self.encoder_y.forward(x)
                # sample q(y|x)
                y = pyro.sample("y", dist.OneHotCategorical(alpha))
            # amortised inference
            # use the encoder to get the parameters used to define q(z|x,y)
            z_loc, z_scale = self.encoder_z.forward(self.concat.forward(x, y))
            # sample q(z|x,y)
            z = pyro.sample("latent", dist.Normal(z_loc, z_scale).to_event(1))
```


Deep Probabilistic Programming - SSVAE

```
# auxiliary model
def model_classify(self, x, y):
    pyro.module("encoder_y", self.encoder_y)
    assert y is not None
    with pyro.plate("data", x.shape[0]):
        alpha = self.encoder_y.forward(x)
        with pyro.poutine.scale(scale=self.aux_loss_multiplier):
            pyro.sample("y_aux", dist.OneHotCategorical(alpha), obs=y)
def guide_classify(self, x, y=None):
    pass
```


Deep Probabilistic Programming - SSVAE

```
for epoch in range(1, epochs+1):
    # perform svi steps on train loader
    epoch_loss = 0.0
    # batches are not shuffled
    for i, (x, y) in enumerate(loaders['train']):
        x = x.reshape(-1, ssvae.input_size).to(device)
        # alternate between supervised and unsupervised batches
        if nth_supervised and (i % nth_supervised == 0):
            y = F.one_hot(y, ssvae.output_size).to(device)
            # perform step on auxiliary model
            if aux_loss:
                        epoch_loss += svi_aux.step(x, y)
        else:
            y = None
        epoch_loss += svi.step(x, y)
```


Deep Probabilistic Programming - SSVAE

ELBO + classification accuracy for data set with 10% labeled

Deep Probabilistic Programming - SSVAE

Newly generated digits

Resources

Probabilistic Graphical Models - D Koller, N Friedman - 2009:
Chapter 2.1.4 and 3
Paper: On Bayesian Analysis of Mixtures with an Unknown Number of
Components (with discussion)
https://academic.oup.com/jrsssb/article-pdf/59/4/
731/49588858/jrsssb_59_4_731.pdf
RJMCMC / Involutive MCMC in Gen Tutorial
https://www.gen.dev/tutorials/rj/tutorial
Paper: Transforming Worlds: Automated Involutive MCMC for
Open-Universe Probabilistic Models
https://people.eecs.berkeley.edu/~russell/papers/
aabi21-oupm.pdf
Data-Driven Proposals in Gen Tutorial https://www.gen.dev/tutorials/
data-driven-proposals/tutorial

Resources

Paper: Using probabilistic programs as proposals https://arxiv.org/pdf/1801.03612.pdf
Paper: Pyro: Deep Universal Probabilistic Programming https://arxiv.org/pdf/1810.09538.pdf

An Introduction to Probabilistic Programming: Chapter 8 Deep
Probabilistic Programming
https://arxiv.org/pdf/1809.10756.pdf
Pyro ELBO Gradients Estimators
https://pyro.ai/examples/svi_part_iii.html
Paper: Auto-Encoding Variational Bayes https://arxiv.org/pdf/1312.6114.pdf

Pyro Semi-Supervised Variational Auto-Encoder https://pyro.ai/examples/ss-vae.html

Organisation

- Last Lecture: Guest lecture, date TBD
- 13.12. A4 Deadline
- 13.12. Project Proposal Deadline
- 20.12. Assignment Discussion Session
- 31.01. Project Presentations

