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Probabilistic Programming and AI: Organization

Registration 
Deadline: October 2nd 
Drop-date: October 17th (coincides with deadline for A1) 

Modality/Grading: 
6 Lectures, 4 Assignments, 2 Assignment discussions (mandatory), 1 Group project 
Grading: 40% Assignments, 60% projects, no exam 

Elective: 
066 645 Data Science 
066 926 Business Informatics 
066 931 Logic and Computation 
066 937 Software Engineering & Internet Computing 

All information on TISS/TUWEL and website: https://probprog-ai-tuwien.github.io/2023/
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Probabilistic Programming

•  Express statistical assumptions via probability distributions 
       Pr(parameters, data) = Pr(parameters) Pr(data | parameters) 

• Inference from data (via conditioning) 
                         Pr(parameters | data = x) 

prior likelihoodjoint

posterior

Bayesian statistics

1.Represent probability distributions as formulas programs  
that generate samples from possible worlds 

2.Build generic algorithms for probabilistic conditioning/inference  
using probabilistic programs as representations

Slide adapted from Dan Roy, “A Personal Viewpoint on Probabilistic Programming"
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Probabilistic Programming and AI: What is thinking?

Slide adapted from Tobias Gerstenberg, "Mental Models as Probabilistic Programs"

How can we describe the 
intelligent inferences made in 
everyday human reasoning? 

How can we engineer 
intelligent machines?

mind = computer mental representations =  
computer programs

thinking = 
running a program

run(program)

Computational theory of mind
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Probabilistic Programming and AI:  
What kind of program can represent thinking?

Tenenbaum, Kemp, Griffiths, & Goodman (2011) How to grow a mind: Statistics, structure, and abstraction. Science  

Structure

Knowledge

Probability

Uncertainty

Slide adapted from Tobias Gerstenberg, "Mental Models as Probabilistic Programs"
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Probabilistic Models: Brief Teaser

μ ~ Normal(0, 10) 
σ ~ LogNormal(0, 5) 
x ~ Normal(μ, σ) 

μ σ

x

Latent Variables

Observed Data

μ ~ Normal(0, 10) 
σ ~ LogNormal(0, 5) 
x1,...xn ~iid Normal(μ, σ) 

μ σ

xn

Latent Variables

Observed Data 
(plate notation)N



Where will the ball land?
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Probabilistic Inference

Run forward

Reason backward
Where did the ball come from?

Slide adapted from Tobias Gerstenberg, "Mental Models as Probabilistic Programs"
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Why are probabilistic models useful? 
- Express prior knowledge about the world 
- Incorporate noisy data 
- Handling uncertainty 

Why are Probabilistic Programming 
Languages useful? Expressivity!

Probabilistic Models: Brief Teaser

μ ~ Normal(0, 10) 
σ ~ LogNormal(0, 5) 
x ~ Normal(μ, σ) 

μ σ

x

Latent Variables

Observed Data
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Probabilistic Programming: Expressivity

Why are PPLs useful? Expressivity! 
- Probabilistic modeling and inference as first class citizens of a programming language 

- Ability to express rich probabilistic models through stochastic control flow  
(beyond Probabilistic Graphical Models and Bayesian Networks) 

- Separating modeling from inference 

- Enable incorporation of programming language and software engineering advances
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Separating Probabilistic Modeling and Inference

Represent probability distributions by programs that generate samples (simulators) 

Using general purpose algorithms for inference using probabilistic programs as model representations 

Probabilistic Model

Inference
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Simple Probabilistic Program: Bayesian Linear Regression in Gen/Julia

Slope and Intercept as Latent Variables (Priors)

Likelihood defined as model over slope and intercept 
with fixed noise

Observed variable samples explicitly recorded in a 
trace {(:y, i)}

Probabilistic 
Modeling as 
Generative 
Function 

(Simulator)

Observations recalled in inference step and passed to 
inference procedure Inference 

separated 
from 

modelingApproximative inference with importance resampling 
(can be exchanged with MCMC, HMC, NUTS, etc.)
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Program Comprehension 
(Reasoning about Programs)

Software Evolution 
(Reasoning about Change)

Software Visualization 
(Reasoning about Large-scale Traces)

Software Testing 
(Reasoning about Correctness)

Software Engineering for Probabilistic Programming

Choice of Priors

Choice of 
Likelihood

Choice of Inference 
Method and Parameters

Choice of Domain-specific 
Visualization

SE for PPL Research in our 
research group

Feedback Cycle
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Software Visualization 
(Reasoning about Traces)

Support visualizing of generative 
worlds and posterior distributions 

that are embedded in domain
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Applications of Probabilistic Programming Languages 
Inverse Modeling: Extracting 3D structures from images

Slide adapted from Dan Roy, “A Personal Viewpoint on Probabilistic Programming"
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Picture: A probabilistic Programming Language for Scene Perception
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Inferring internal affective states with PPLs
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From Word Models to World Models using PPLs

Wong & Grand et al., "From Word Models to World Models: Translating from Natural Language to the Probabilistic Language of Thought" 
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From Word Models to World Models using PPLs

Wong & Grand et al., "From Word Models to World Models: Translating from Natural Language to the Probabilistic Language of Thought" 
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Probabilistic Programming Languages (PPLs)
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PPL Overview

Classical PPLs

Have their own modeling Language 

Offer a limited set of black-box inference methods 

Examples: 
Bugs, Stan 



21

PPL Overview

Modern PPLs

Are embedded in another language (e.g. Python) 

Offer a limited set of black-box inference methods 

Examples: 
PyMC, Turing.jl 
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Deep PPLs

Are embedded in another language (e.g. Python) 

Often rely on variational inference and underlying machine learning 
frameworks (e.g., PyTorch, Tensorflow) 

Examples: 
Edward, Pyro 

PPL Overview
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PPL Overview

Flexible PPLs

Are embedded in another language (e.g. Python) 

Offer the possibility to implement custom inference methods 

Examples: 
Gen, Beanmachine 
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PPL Overview

Classical PPLs             Modern PPLs           Deep PPLs           Flexible PPLs 

BUGS                              PyMC                        Edward                 Gen 
Stan                                Turing.jl                     Pyro                      Beanmachine 
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PPL Overview

Classical PPLs             Modern PPLs           Deep PPLs           Flexible PPLs 

BUGS                              PyMC                        Edward                 Gen 
Stan                                Turing.jl                    Pyro                      Beanmachine 
            
        



26

Hello, world coin

 Given 10 coinflips (observations): Can we infer the bias of a Coin?

Model: 
θ ~ Beta(2,2)        // coin bias 
y ~ Bernoulli(θ)   // coin flip result 

Beta(2,2)
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Coin Flip Comparison between 
different PPLs 

Examples can be found at:  
github.com/ipa-lab/ppl-comparison
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PPL Comparison

Mathematical Model: 

θ ~ Beta(2,2)        // coin bias 
y ~ Bernoulli(θ)   // coin flip result 
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PPL Comparison - Modeling
Stan Gen Turing.jl

Pyro
Beanmachine
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PPL Comparison - Inference
Turing (representative for black-box inference)

Pyro (representative for variational inference)

Gen (representative for programmable inference)
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PPL Comparison - Posterior Distributions
Stan Beanmachine Pyro

Turing.jl Gen



Live lectures in Seminarraum FAV 01 A (Seminarraum 183/2) — Kick-off in FAV Hörsaal 2 
>> not mandatory, but recommended 
 

Probabilistic Programming and AI: Course Overview



Live lectures in Seminarraum FAV 01 A (Seminarraum 183/2) — Kick-off in FAV Hörsaal 2 
>> not mandatory, but recommended 
 

Probabilistic Programming and AI: Course Overview



40% — 4 Assignments with 2 assignment discussion sessions (online and mandatory!) 
60% — Group project with final presentation  
 
Assignments: 
Assignment 1:   Introduction to PPLs                          Assignment 2:   Minimal PPL implementation 
Assignment 3:   MH Inference Impl.                             Assignment 4:   Gradient-based Inference Impl.  

Group project: You will submit project proposals (we will provide feedback on feasibility) 
 
Initial ideas:  
• Applying probabilistic programming to a non-trivial problem 
• Implementing an advanced inference algorithm in our minimal PPL 
• Implementing a PPL following a different design principle 
 

Probabilistic Programming and AI: Course Overview



You can find assignment 1 (A1) on TUWEL 

Remember: Successfully completing A1 until October 17th  
is mandatory for your final registration


