Probabilistic Programming
and Artificial Intelligence

TU Wien, 194.150, VU 6 ECTS

Jurgen Cito
Markus Bock

TU Wien, Austria

Informatics

Probabilistic Programming and Al: Organization

All information on TISS/TUWEL and website: https://probprog-ai-tuwien.github.io/2023/

Registration

Deadline: October 2nd
Drop-date: October 17th (coincides with deadline for A1)

Modality/Grading:

6 Lectures, 4 Assignments, 2 Assignment discussions (mandatory), 1 Group project
Grading: 40% Assignments, 60% projects, no exam

Elective:

066 645 Data Science

066 926 Business Informatics

066 931 Logic and Computation

066 937/ Software Engineering & Internet Computing

B Informatics

Probabilistic Programming

1.Represent probability distributions as fermulas programs
that generate samples from possible worlds

2.Build generic algorithms for probabilistic conditioning/inference
using probabilistic programs as representations

Bayesian statistics

« Express statistical assumptions via probability distributions
lPr(parameters, data),=l Pr(parameters)"Pr(data | parameters),

| | |
joint prior likelihood

» Inference from data (via conditioning)

Pr(parameters | data = x)

| J
|

B Informatics posterior

Slide adapted from Dan Roy, “A Personal Viewpoint on Probabilistic Programming"

Probabilistic Programming and Al: What is thinking?

How can we describe the

intelligent inferences made in < > HOV\I/I'Can we enrginee’)r
everyday human reasoning? intelligent machines?

Computational theory of mind

gn;C++

run(program)

mind = computer mental representations = thinking =

Informatics

running a program
computer programs S & PIRE

Slide adapted from Tobias Gerstenberg, "Mental Models as Probabilistic Programs" 4

Probabilistic Programming and Al:
What kind of program can represent thinking?

Structure Probability

Knowledge Uncertainty

| ﬂfo rm aJUCS Tenenbaum, Kemp, Griffiths, & Goodman (2011) How to grow a mind: Statistics, structure, and abstraction. Science

Slide adapted from Tobias Gerstenberg, "Mental Models as Probabilistic Programs" 5

Probabilistic Models: Brief Teaser

u ~ Normal (0, 10)

o ~ LogNormal (6, 5)

X ~ Normal(u, o)

pve

Informatics

Latent Variables

Observed Data

u ~ Normal (0, 10)
o ~ LogNormal (6, 5)
Xy oo X, ~tid Normal(u, o)

&
5

Latent Variables

Observed Data
(plate notation)

Probabilistic Inference ”

‘ql

Run forward
Where will the ball land?

<l o Qo

Reason backward
nformatics Where did the ball come from?

Slide adapted from Tobias Gerstenberg, "Mental Models as Probabilistic Programs" 7

Probabilistic Models: Brief Teaser

u ~ Normal (0, 10)
o ~ LogNormal (6, 5)
X ~ Normal(u, o)

Observed Data

Q 9 Latent Variables

B Informatics

Why are probabilistic models useful?

- Express prior knowledge about the world
- Incorporate noisy data
- Handling uncertainty

Why are Probabilistic Programming
Languages useful? Expressivity!

Probabilistic Programming: Expressivity

Why are PPLs useful? Expressivity!
- Probabilistic modeling and inference as first class citizens of a programming language

- Ability to express rich probabilistic models through stochastic control flow
(beyond Probabilistic Graphical Models and Bayesian Networks)

- Separating modeling from inference

- Enable incorporation of programming language and software engineering advances

B Informatics

Separating Probabilistic Modeling and Inference

Represent probability distributions by programs that generate samples (simulators)

Using general purpose algorithms for inference using probabilistic programs as model representations

Probabilistic Model

@gen function line model(xs::Vector{Floaté64})
slope = ({:slope} ~ normal(0, 1))
intercept = ({:intercept} ~ normal(0, 2))

for (i, X) in enumerate(xs)
({(:y, 1)} ~ normal(slope * x + intercept, 0.1))
end

return length(xs)
end;

Nformatics

Inference

function do_inference(model, xs, ys, amount of computation)
observations = Gen.choicemap()
for (i, y) in enumerate(ys)
observations[(:y, i1)] =y
end

(trace,) = Gen.importance resampling(model, (xs,),

observations, amount of computation);
return trace

end;
Xxs = [..-];
ys = [...];

sample trace = Gen.simulate(line model, (xs,));

trace = do_inference(line model, xs, ys, 100)

10

Simple Probabilistic Program: Bayesian Linear Regression in Gen/Julia

@gen function line model(xs::Vector{Float64})
slope = ({:slope} ~ normal(0, 1))
intercept = ({:intercept} ~ normal(0, 2))

for (i, x) in enumerate(xs)
({(:y, 1)} ~ normal(slope * x + intercept, 0.1))
end
return length(xs)
end;

function do_inference(model, xs, ys, amount of computation)
observations = Gen.choicemap()
for (i, y) in enumerate(ys)
observations[(:y, 1)] =y
end

(trace,) = Gen.importance resampling(model, (xs,),
observations, amount of computation);
return trace

end;
XS = [eee]y
ys = [...];

sample trace = Gen.simulate(line model, (xs,));

trace = do_inference(line model, xs, ys, 100)

Nformatics

Slope and Intercept as Latent Variables (Priors)
Probabilistic
Likelihood defined as model over slope and intercept Modeling as
with fixed noise Generative
Function
Observed variable samples explicitly recorded in a (Simulator)
trace {(:y, 1)}
Observations recalled in inference step and passed to
inference procedure Inference
separated
from
Approximative inference with importance resampling modeling
(can be exchanged with MCMC, HMC, NUTS, etc.)

11

Software Engineering for Probabilistic Programming

@gen function line model(xs::Vector{Float64})
slope = ({:slope} ~ normal(0, 1))

intercept = ({:intercept} ~ normal(0, 2)) Choice of Priors

for (i, x) in enumerate(xs)
({(:y, 1)} ~ normal(slope * x + intercept, 0.1))

end
return length(xs) Choice of
end; Likelihood

function do_inference(model, xs, ys, amount of computation)
observations = Gen.choicemap()

for (i, y) in enumerate(ys)
observations[(:y, 1)] =y
end

Feedback Cycle

(trace,) = Gen.importance resampling(model, (xs,),
observations, amount of computation);

return trace
end; Choice of Inference

XS = [eee]y

Method and Parameters

ys = [---];
sample trace = Gen.simulate(line model, (xs,));

trace = do_inference(line model, xs, ys, 100)

Choice of Domain-specific
Visualization

Nformatics

SE for PPL Research in our
research group

Program Comprehension
(Reasoning about Programs)

Software Evolution
(Reasoning about Change)

Software Visualization
(Reasoning about Large-scale Traces)

Software Testing
(Reasoning about Correctness)

12

Software Visualization
(Reasoning about Traces)

function grid(renderer::Function, traces; ncols=6, nrows=3)
figure(figsize=(16, 8))
for (i, trace) in enumerate(traces)
subplot (nrows, ncols, i)
renderer (trace)
end
end;

function overlay(renderer, traces; same_data=true, args...)
if !isempty(traces)
renderer (traces[1], show data=true, args...)
for i=2:length(traces)
renderer (traces[i], show data=!same data, args...)
end
end
end;

Support visualizing of generative
worlds and posterior distributions
that are embedded in domain

Nformatics

24 2 2
0 0 0
-2 -2 -2

X |

_"W

21 geeee® "]

-50 -25 00 25 50 -50 -25 00 25 50 -50 -25 00 25 5.

0 -50 -25 00 25 5.

0 -5.0 -25 00 25 5.

0 -5.0 -25 00 25 50

4 4 4

2

0

-2

|
N o N
|
N o N

-4 -4 -4

//f”,w”'

-4

A

44

—_

-4

0

-2

44

24

04

—24

—44

-50 -25 00 25 50 -50 -25 00 25 50 -50 -25 00 25 5.

0 -50 -25 00 25 5.

0 -5.0 -25 00 25 5.

0 -5.0 -25 00 25 50

4 4 4
2 2 2
0 0 0
-2 -2 -2
44 -4 -4

04
24
44

44

2

R

4

24

04

2

-4

44

24

0

21

-4

Oberved data and posterior samples

-50 -25 00 25 50 -50 -25 00 25 50 -50 -25 00 25 50 -50 -25 00 25 50 -50 -25 00 25 50 -50 -25 00 25 50

13

Applications of Probabilistic Programming Languages
Inverse Modeling: Extracting 3D structures from images

inference

Nformatics

Slide adapted from Dan Roy, “A Personal Viewpoint on Probabilistic Programming" 14

TU

WIEN

Picture: A probabilistic Programming Language for Scene Perception

Observed Inferred
Image |(reconstruction)

QABE

(a) Scene
Language

Wene SP

Approximate

Inferred model
re-rendered with
novel poses

v

€O

Representation Layer
e.g. Deep Neural Net,
Contours, Skeletons, Pixels

> v(.)

Renderer Ip

/

Inferred model
re-rendered with

novel lighting

©F
veev
o€

¢oee

V(IR)l | v(Ip)

Ip

X°
Rendering
Tolerance

Likelihood or Likelihood-free

Comparator

P(Ip|Ig, X)
or

Av(Ip),v(IR))

Observed
Image

(b)

Given

Inference Engine
Automatically

current produces

(57, XP) —>
and

1p

Elliptical Slice, 7 stice(Syear = S/%at)
Data-driven =, ((s*,x*) - (5, X))

image I p proposals

qp((S?,X?) — (57, X))
MCMC, HMC, = Zme(Sear = S%) ——>

New

(87, X')

function PROGRAM (MU, PC, EV, VERTEX_ORDER)
Scene Language: Stochastic Scene Gen
face=Dict ();shape = []; texture = [];
for S in ["shape", "texture"]
for p in ["nose", "eyes", "outline", "lips"]
coeff = MvNormal(0,1,1,99)
face[S][p] = MU[S][p]+PC[S][p].x* (coeff.*xEV[S][p])
end
end
shape=face["shape"] [:]; tex=face["texture"][:];
camera = Uniform(-1,1,1,2); light = Uniform(-1,1,1,2)

Approximate Renderer
rendered_img= MeshRenderer (shape, tex, light, camera)

Representation Layer
ren_£ftrs = getFeatures ("CNN_Convé6", rendered_img)

Comparator
#Using Pixel as Summary Statistics
observe (MvNormal (0,0.01), rendered_img-obs_img)
#Using CNN last conv layer as Summary Statistics
observe (MvNormal (0,10), ren_ftrs-obs_cnn)

end

global obs_img = imread("test.png")

global obs_cnn = getFeatures ("CNN_Convé", img)
#Load args from file

TR = trace (PROGRAM, args=[MU, PC, EV, VERTEX_ORDER])
Data-Driven Learning
learn_datadriven_proposals (TR, 100000, "CNN_Convé")
load_proposals (TR)

Inference

infer (TR, CB, 20, ["DATA-DRIVEN"])

infer (TR, CB, 200, ["ELLIPTICAL"])

15

Inferring internal affective states with PPLs

1 class MultimodalVAE():

2 def condition(self, outcome, emotion, image):
/' # generate a new emotion from outcome

3 prediction_mean = self.outcomes_to_affect(outcome) +
/' # sample affect given priors ;Appraisali
4 affect = pyro.sample(“"affect", Normal(prediction_mean, 1)) 7777 v '
!/ # generate the facial expression, condition on the observed data

5 face_mean = self.affectToFace_Decoder(affect) @
6 face = pyro.sample("face"”, Bernoulli(face_mean), obs=image) e

/I # generate the outcome ratings, condition on the observed data Emotion

7 emo_mean = self.affectToRating Decoder (affect) Ratings Facial

8 emo = pyro.sample("emo", Normal(emo_mean, 1), obs=emotion) 2

9

Nnformatics

Conditioned on: Conditioned on:
low reward high reward

Conditioned on:
high anger

high surprise
high disappointment

$14.595
Conditioned on:
high happiness
high contentment i

v
Conditioned on:
high happiness
high anger ‘ $90.923
high disappointment 338734

<

16

From Word Models to World Models using PPLs

Approaches to language-informed thinking

Large language models Classical symbolic models

_%> e
T ’ =

Ax.Vx .. - true

s
o> RY

Natural Meaning Probabilistic Inference Distributions over
language function language of thought function possible worlds

vV

3 3 8 % 8 8 &
E I

Nformatics

Wong & Grand et al., "From Word Models to World Models: Translating from Natural Language to the Probabilistic Language of Thought" 17

From Word Models to World Models using PPLs

Probabilistic Relational Perceptual and Social
Reasoning Reasoning Physical Reasoning Reasoning

<

€ —————

T

Bayesian tug-of-war Kinship systems Visual and physical scenes Agents and planning
Knowledge The winner of a match is whichever A grandfather is the father of one's Objects vary in both their possible Depending on whether they have a
about the world team is stronger. parent. shape and possible color. bike, people can bike or walk.
(define (define (define (define
Generative won-against (team-1 team-2) grandfather-of? (name_a name_b) object (obj-id) actions (agent-id)
world models > (> (team-strength team-1) (exists (lambda (x) (and (list (choose-shape obj-id) (if (has_bike? agent-id)
(team-strength team-2))) (father-of? name_a x) (choose-color obj-id))) (list 'is_walking 'is_biking)
(parent-of? x name_b))) (list 'is_walking)))
Observations John and Mary faced off against Tom Charlielis Dana's grandfathers There is at least one red mug in this Alex loves susru b.ut hates pizza; and he
about the world and Sue and won. scene. brought his bike to work today.
(condition (condition (condition (condition
L (won-against '(john mary) (grandfather-of? 'charlie (>= (length (and (loves? 'alex 'sushi)
Condition » *(tom sue))) 'dana)) ((f%lter'ShaPe 'mug) (hates? 'alex 'pizza)
statements ’ ((filter-color red) (has-bike? 'alex)))

(objects-in-scene
'this-scene)))) 1))

Questions Is Mary stronger than Tom? Whichof Charlie's ‘;'ds SRanal How many mugs are there? What do you think Alex will do?
about the world parent?

(query (query (query (query (get_actions 'alex))
(> (strength 'mary) (filter-tree (length
Query %’ (strength 'tom))) (lambda (x) (and ((filter-shape 'mug)
statements (child-of? x 'charlie) (objects-in-scene
(parent-of? x 'dana))))) 'this-scene))))

Nformatics

Wong & Grand et al., "From Word Models to World Models: Translating from Natural Language to the Probabilistic Language of Thought"

Ty

Probabilistic Programming Languages (PPLs)

Nformatics

Anglican
dibhiaaleler g1l
EaiE=ne N2k

Beanmachine IBAL

Lea Church

Birch P ro
Edwar%PFLACTORIE e Y

BayesDB Tuffy 9greta proBT

ProbLog PSIS E B a []NumPyro
Dyna Lo Figaro

BLOG Saul Tow-level Chimple

Gen e Venture RankPL BUGS

dulei=cp s GHEEEE
TrOllpsQL First—orderdlmple

Rainier PMTK Gamble
ProbCog o , e
Erobablllstlc—c TensorFlow Probability
PWhile Alchemy Picture

P yMC pomegranate

Blang

bayesloop
Hakaru

19

PPL Overview

Classical PPLs

Have their own modeling Language

Offer a limited set of black-box inference methods

Examples:
Bugs, Stan

B Informatics

PPL Overview

Modern PPLs

Are embedded in another language (e.g. Python)

Offer a limited set of black-box inference methods

Examples:
PyMC, Turing.jl

B Informatics

PPL Overview

Deep PPLs

Are embedded in another language (e.g. Python)

Often rely on variational inference and underlying machine learning
frameworks (e.g., PyTorch, Tensorflow)

Examples:
Edward, Pyro

B Informatics

PPL Overview

Flexible PPLs

Are embedded in another language (e.g. Python)

Offer the possibility to implement custom inference methods

Examples:
Gen, Beanmachine

B Informatics

PPL Overview

Classical PPLs Modern PPLs Deep PPLs Flexible PPLs
BUGS PyMC Edward Gen
Stan Turing.jl Pyro Beanmachine

B Informatics

PPL Overview

Classical PPLs Modern PPLs Deep PPLs Flexible PPLs
Gen
Stan Turing.jl Pyro Beanmachine

Informatics

25

Hello, werld coin

Given 10 coinflips (observations): Can we infer the bias of a Coin?

M Od e| . Beta(2,2)
6 ~ Beta(2,2) // coin bias
y ~ Bernoulli(8) // coin flip result

g 0.8 1
0.6
0.4 4

0.2 1

0.0 1

0.0 0.2 0.4

B Informatics

0.6

0.8

1.0

Coin Flip Comparison between
different PPLs

Examples can be found at:
github.com/ipa-lab/ppl-comparison

B Informatics

PPL Comparison

Mathematical Model:

0 ~ Beta(2,2) // coin bias
y ~ Bernoulli(8) // coin flip result

B Informatics

PPL Comparison - Modeling

Stan Gen
stan_model = """ @gen function my_model(ys::Vector{Bool})
e theta ~ beta(2, 2)
int yIN]; for (i, y) in enumerate(ys)
gammmwrs{ @trace(bernoulli(theta), "y-$i")
real theta; end
}
model { end

theta ~ beta(2, 2);
for (n in 1:N)
y[n] ~ bernoulli(theta);
}

Pyro
def simple_model(flips=None):
a = pyro.param("a", lambda: torch.tensor(2.0))

b = pyro.param("b", lambda: torch.tensor(2.0))
theta = pyro.sample("theta", distP.Beta(a,b))

with pyro.plate("data"):
return pyro.sample("obs", dist.Bernoulli(theta), obs=flips)

Nformatics

Turing.jl

@model function coinflip(y)
theta ~ Beta(2, 2)
N = length(y)
for n in 1:N
y[n] ~ Bernoulli(theta)
end
end

Beanmachine

#Heads rate
@bm.random_variable
def theta():

return dist.Beta(2, 2)

#coin flip
@bm.random_variable
def y(i: int):
return dist.Bernoulli(theta())

29

PPL Comparison - Inference

Turing (representative for black-box inference)

chain = sample(coinflip(data), MH(), 1000)

Pyro (representative for variational inference)

guide = pyro.infer.autoguide.AutoNormal(simple_model)
adam = pyro.optim.Adam({"1r": 0.02}) # Consider decre
elbo = pyro.infer.Trace_ELBO()

svi = pyro.infer.SVI(simple_model, guide, adam, elbo)

losses = []
for step in range(1000):
loss = svi.step(y_obs)
losses.append(loss)
if step % 100 == 0O:
print("Elbo loss: {}".format(loss))

Nformatics

Gen (representative for programmable inference)
function my_inference_program(ys::Vector{Bool}, num_iters::Int)

end

Create a set of constraints fixing the

y coordinates to the observed y values

constraints = choicemap()

for (i, y) in enumerate(ys)
constraints["y-$i"] =y

end

Run the model, constrained by ‘constraints’,
to get an initial execution trace
(trace, _) = generate(my_model, (ys,), constraints)

xs = Float64[]

Iteratively update the slope then the intercept,

using Gen's metropolis_hastings operator.

for iter=1l:num_iters
(trace, _) = metropolis_hastings(trace, select(:theta))
push!(xs, tracel[:theta])

end

From the final trace, read out the slope and

the intercept.
return xs

30

PPL Comparison - Posterior Distributions

Stan Beanmachine Pyro
—— True theta = 0.750 —— True theta = 0.750 200 — True theta = 0.750
Empirical heads rate = 0.800 2001 Empirical heads rate = 0.800 Empirical heads rate = 0.800
800 1 Posterior mean = 0.717 Posterior mean = 0.717 175 - Posterior mean = 0.795
150 1
150 1
600 -
125 A
100 -
400 - 1001
75 1
200 1 50 1 s
25
0- 0- 0-
03 04 05 06 07 08 09 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 0.9

Gen = True theta = 0.750
Empirical heads rate = 0.800
800 Posterior mean = 0.707

H i —— True theta = 0.750
Turing.jl
g j 2001 Empirical heads rate = 0.800

Posterior mean = 0.720

175 1

150
600 -

125

100
400 A

751
50 1 200

5.

n fo rm at i C S . 0.4 0.5 0.6 0.7 0.8 0.9 1.0 06-2

Probabilistic Programming and Al: Course Overview

Live lectures in Seminarraum FAV 01 A (Seminarraum 183/2) — Kick-off in FAV Horsaal 2
>> not mandatory, but recommended

04.10.
15:00-17:00

04.10.

11.10.
15:00-17:00

11.10.

Kick-Off & Lecture 1:

» Introduction to Probabilistic
Programming

» Probability and Bayesian Statistics
Primer

FAV Horsaal 2

Release Assignment 1 (A1)

Lecture 2:

» Bayesian Inference and Generative
Modelling

 Probabilistic Programming Languages

» Implementation Designs

o Minimal PPL Implementation

» Independent Sampling

Release Assignment 2 (A2)

Nformatics

Bayesian Methods for Hackers
Probabilistic Programming and
Bayesian Inference: Chapter 1

Seeing Theory: Chapters 1,2,3,5
3Blue1Brown Bayes Theorem

Al That Understands the World, Using
Probabilistic Programming

Bayesian Inference Framework
Intuition behind Bayesian inference
Bayesian posterior sampling
Generative Models

A Personal Viewpoint on Probabilistic
Programming

18.10.
15:00-17:00

25.10.
15:00-17:00

Lecture 3:

+ Dependent Sampling

+ Markov Chain Monte Carlo

¢ Metropolis Hastings Algorithm
¢ Hamiltonian Monte Carlo

Lecture 4:

« Variational Inference
« Automatic Differentiation VI
« Stochastic VI

Why we use dependent sampling to
sample from the posterior

An introduction to the Random Walk
Metropolis algorithm

Paper: Single-Site MH for PPL
Handbook of MCMC: Chapter 5:
MCMC Using Hamiltonian Dynamics
The intuition behind the Hamiltonian
Monte Carlo algorithm

MCMC Interactive Gallery

Paper: No-U-Turn Sampler

KL Divergence - Clearly explained!
Variational Inference + ELBO Intuition
Automatic Differentiation and Gradient
Descent

Paper: Automatic Differentiation
Variational Inference

Paper: Stochastic Variational Inference

Probabilistic Programming and Al: Course Overview

Live lectures in Seminarraum FAV 01 A (Seminarraum 183/2) — Kick-off in FAV Horsaal 2
>> not mandatory, but recommended

18.10. Lecture 3:
15:00-17:00 Why we use dependent sampling to
» Dependent Sampling sample from the posterior
04.10. Kick-Off & Lecture 1:) » Markov Chain Monte Carlo ¢ An introduction to the Random Walk
15:00-17:00 * Bayesian Methods for Hackers « Metropolis Hastings Algorithm Metropolis algorithm
» Introduction to Probabilistic Probabilisti ~ ’ ' Monte Carlo « Paper: Single-Site MH for PPL
Programming Bayesian Ir Handbook of MCMC: Chapter 5:
« Probability and Bayesian Statistics e Seeing The 06.12. Lecture 5: MCMC Using Hamiltonian Dynamics
Primer ¢ 3Blue1Brov 15:00-17:00 « The intuition behind the Hamiltonian
) * Al That Uni ¢ Advanced Inference Monte Carlo algorithm
FAV Horsaal 2 Probabilisti e TBD MCMC Interactive Gallery
» Paper: No-U-Turn Sampler
04.10. Release Assignment 1 (A1) 07.12. Office Hours 13:15-15:00 (online)
11.10. Lecture 2:) « KL Divergence - Clearly explained!
15:00-17:00)) ° Bayg&an Ir 13.12. Lecture 6: iference « Variational Inference + ELBO Intuition
* Bayesian Inference and Generative e Intuition be ~ 15:00-17:00 L ifferentiation VI « Automatic Differentiation and Gradient
Modelling « Bayesian p « Probabilistic Al | Descent
» Probabilistic Programming Languages » Generative e TBD « Paper: Automatic Differentiation
» Implementation Designs « A Personal Variational Inference
o Minimal PPL Implementation Programmi 1312, A4 Deadline o Paper: Stochastic Variational Inference
» Independent Sampling
13.12. Project Proposal Deadline
11.10. Release Assignment 2 (A2)
20.12. Assignment Discussion Session A3 & A4
15:00-17:00
31.01. Final Project Presentations
14:00-17:00

Nformatics

Probabilistic Programming and Al: Course Overview

40% — 4 Assignments with 2 assignment discussion sessions (online and mandatory!)
60% — Group project with final presentation

Assignments:
Assignment 1. Introduction to PPLs Assignment 2. Minimal PPL implementation
Assignment 3: MH Inference Impl. Assignment 4. Gradient-based Inference Impl.

Group project: You will submit project proposals (we will provide feedback on feasibility)

Initial ideas:

 Applying probabilistic programming to a non-trivial problem
 Implementing an advanced inference algorithm in our minimal PPL
+ Implementing a PPL following a different design principle

B Informatics

Probabilistic Programming and Al:
What kind of program can represent thinking?

Structure Probability

@gen function line model(xs::Vector{Float64})
slope = ({:slope} ~ normal(0, 1))
intercept = ({:intercept} ~ normal(0, 2))

for (i, x) in enumerate(xs)

({(:y, i)} ~ normal(slope * x + intercept, 0.1))
end
return length(xs)

end;

function do_inference(model, xs, ys, amount_of computation)
observations = Gen.choicemap()
for (i, y) in enumerate(ys)
observations[(:y, i)] =y
end

(trace, _) = Gen.importance_resampling(model, (xs,),
observations, amount_of_ computation);
return trace

end;
xs = [...];
ys = [---1;

sample_trace = Gen.simulate(line_model, (xs,));

Knowledge Uncertainty e

You can find assignment 1 (A1) on TUWEL

Remember: Successfully completing A1 until October 17th
is mandatory for your final registration

Nformatics

Slope and Intercept as Latent Variables (Priors)

Probabilistic
Likelihood defined as model over slope and intercept Modeling as
with fixed noise Generative
Function
Observed variable samples explicitly recorded in a (Simulator)
trace {(:y, 1)}
Observations recalled in inference step and passed to
inference procedure Inference
separated
from
Approximative inference with importance resampling modeling

(can be exchanged with MCMC, HMC, NUTS, etc.)

