Probabilistic Programming and Artificial Intelligence

TU Wien, 194.150, VU 6 ECTS

Jürgen Cito Markus Böck

TU Wien, Austria

Probabilistic Programming and AI: Organization

All information on TISS/TUWEL and website: https://probprog-ai-tuwien.github.io/2023/

Registration Deadline: October 2nd Drop-date: October 17th (coincides with deadline for A1)

Modality/Grading: 6 Lectures, 4 Assignments, 2 Assignment discussions (mandatory), 1 Group project Grading: 40% Assignments, 60% projects, no exam

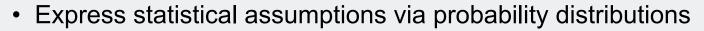
Elective: 066 645 Data Science 066 926 Business Informatics 066 931 Logic and Computation 066 937 Software Engineering & Internet Computing

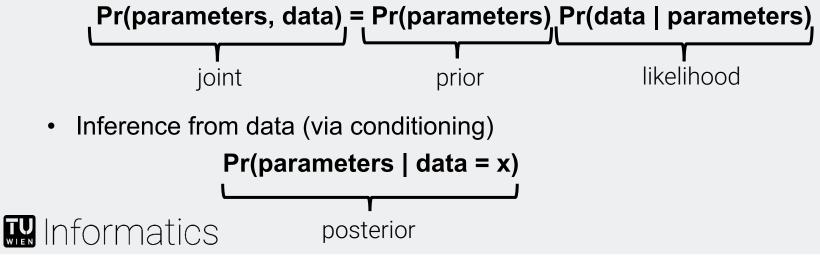
Probabilistic Programming

1.Represent probability distributions as formulas programs that generate samples from possible worlds

2.Build generic algorithms for probabilistic conditioning/inference using probabilistic programs as representations

Bayesian statistics

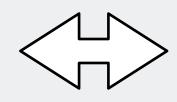




Slide adapted from Dan Roy, "A Personal Viewpoint on Probabilistic Programming" 3

Probabilistic Programming and AI: What is thinking?

How can we describe the intelligent inferences made in everyday human reasoning?



How can we engineer intelligent machines?

Computational theory of mind

run(program)

mind = computer

W Informatics

mental representations = computer programs

thinking = running a program

Slide adapted from Tobias Gerstenberg, "Mental Models as Probabilistic Programs" 4

Probabilistic Programming and AI: What kind of program can represent thinking?

Structure

Probability

Knowledge

W Informatics

Uncertainty

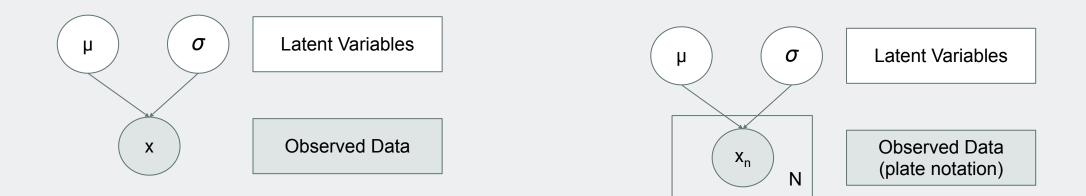
Tenenbaum, Kemp, Griffiths, & Goodman (2011) How to grow a mind: Statistics, structure, and abstraction. Science

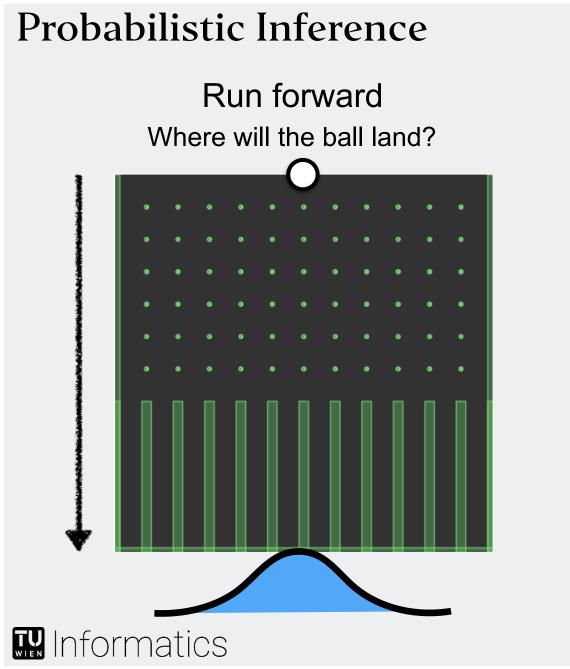
Slide adapted from Tobias Gerstenberg, "Mental Models as Probabilistic Programs" 5

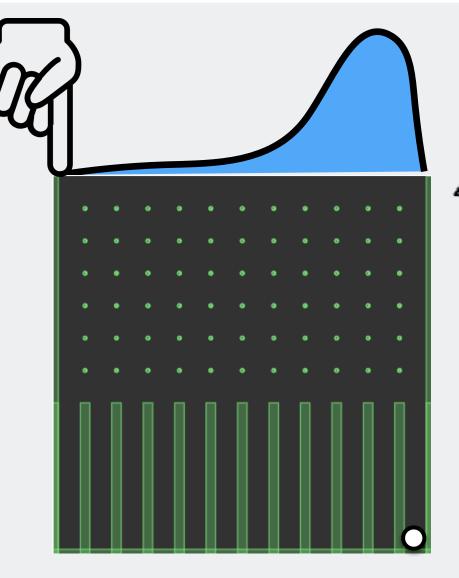
Probabilistic Models: Brief Teaser

 $\mu \sim Normal(0, 10)$ $\sigma \sim LogNormal(0, 5)$ $x \sim Normal(\mu, \sigma)$

 $\mu \sim Normal(0, 10)$ $\sigma \sim LogNormal(0, 5)$ $x_1, \dots x_n \sim^{iid} Normal(\mu, \sigma)$







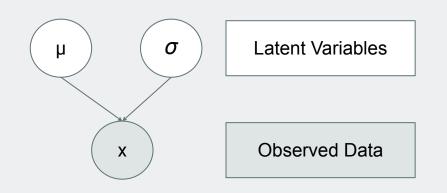
Reason backward

Where did the ball come from?

Slide adapted from Tobias Gerstenberg, "Mental Models as Probabilistic Programs" 7

Probabilistic Models: Brief Teaser

 $\mu \sim Normal(0, 10)$ $\sigma \sim LogNormal(0, 5)$ $x \sim Normal(\mu, \sigma)$



Why are probabilistic models useful?

- Express prior knowledge about the world
- Incorporate noisy data
- Handling uncertainty

Why are Probabilistic Programming Languages useful? **Expressivity!**

Probabilistic Programming: Expressivity

Why are PPLs useful? Expressivity!

- Probabilistic modeling and inference as first class citizens of a programming language
- Ability to express rich probabilistic models through stochastic control flow (beyond Probabilistic Graphical Models and Bayesian Networks)
- Separating modeling from inference
- Enable incorporation of programming language and software engineering advances

Separating Probabilistic Modeling and Inference

Represent probability distributions by programs that generate samples (simulators)

Using general purpose algorithms for inference using probabilistic programs as model representations

Probabilistic Model

W Informatics

```
@gen function line_model(xs::Vector{Float64})
    slope = ({:slope} ~ normal(0, 1))
    intercept = ({:intercept} ~ normal(0, 2))
    for (i, x) in enumerate(xs)
        ({(:y, i)} ~ normal(slope * x + intercept, 0.1))
    end
    return length(xs)
end;
```

Inference

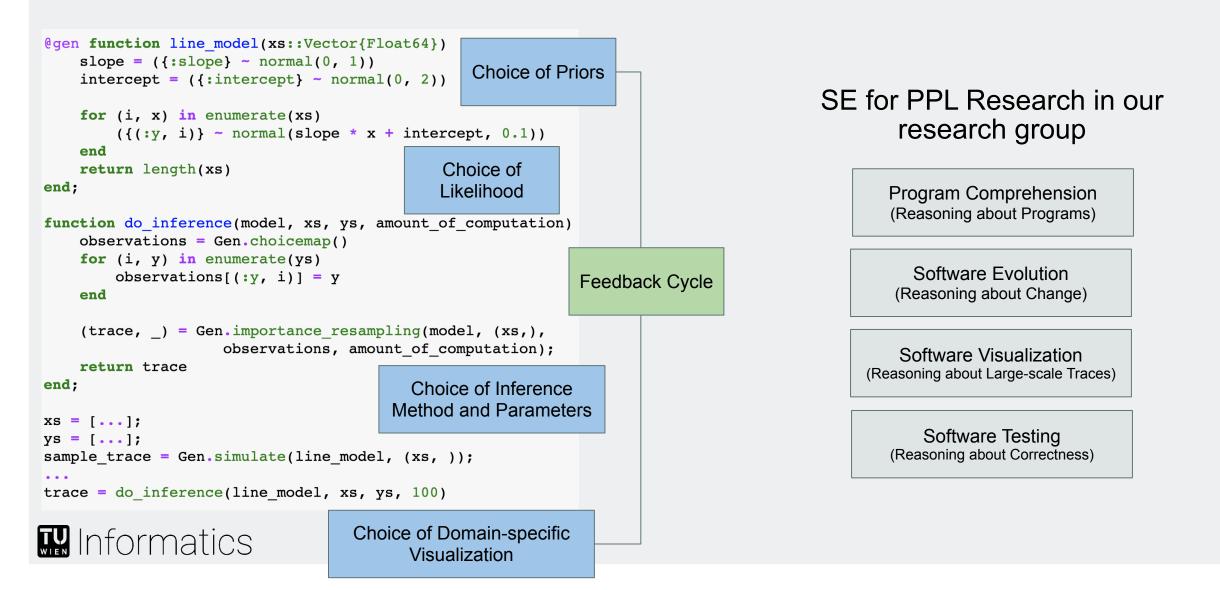
Simple Probabilistic Program: Bayesian Linear Regression in Gen/Julia

```
@gen function line model(xs::Vector{Float64})
    slope = ({:slope} ~ normal(0, 1))
    intercept = ({:intercept} ~ normal(0, 2))
    for (i, x) in enumerate(xs)
        ({(:y, i)} ~ normal(slope * x + intercept, 0.1))
    end
    return length(xs)
end;
function do inference (model, xs, ys, amount of computation)
    observations = Gen.choicemap()
    for (i, y) in enumerate(ys)
        observations[(:y, i)] = y
    end
    (trace, ) = Gen.importance resampling(model, (xs,),
                    observations, amount of computation);
    return trace
end;
xs = [...];
ys = [...];
sample trace = Gen.simulate(line model, (xs, ));
. . .
```

```
trace = do_inference(line_model, xs, ys, 100)
```

Slope and Intercept as Latent Variables (Priors)	Probabilistic Modeling as Generative Function (Simulator)
Likelihood defined as model over slope and intercept with fixed noise	Modeling as Generative
Observed variable samples explicitly recorded in a trace {(:y, i)}	
Observations recalled in inference step and passed to inference procedure	Inference separated
Approximative inference with importance resampling (can be exchanged with MCMC, HMC, NUTS, etc.)	from modeling

Software Engineering for Probabilistic Programming



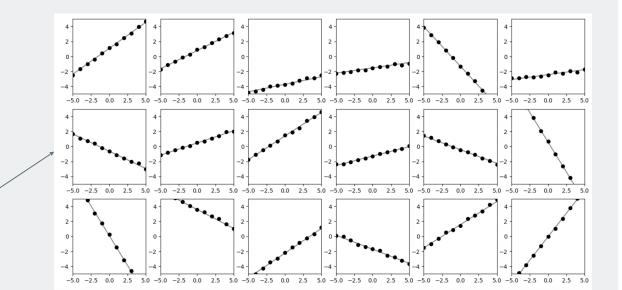
Software Visualization (Reasoning about Traces)

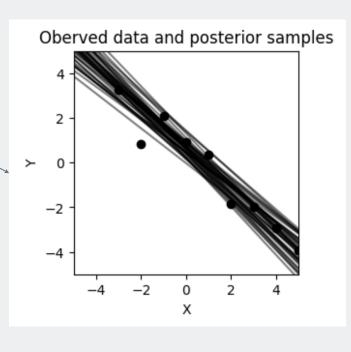
```
function grid(renderer::Function, traces; ncols=6, nrows=3)
figure(figsize=(16, 8))
for (i, trace) in enumerate(traces)
    subplot(nrows, ncols, i)
    renderer(trace)
end
```

```
end;
```

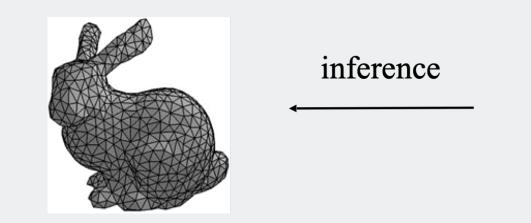
```
function overlay(renderer, traces; same_data=true, args...)
if !isempty(traces)
    renderer(traces[1], show_data=true, args...)
    for i=2:length(traces)
        renderer(traces[i], show_data=!same_data, args...)
    end
end
end;
```

Support visualizing of generative worlds and posterior distributions that are embedded in domain



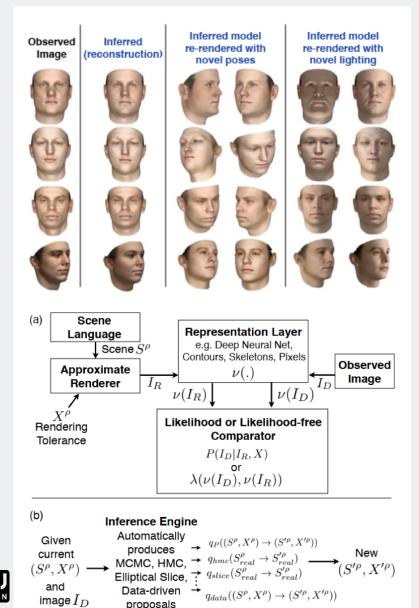


Applications of Probabilistic Programming Languages Inverse Modeling: Extracting 3D structures from images



Slide adapted from Dan Roy, "A Personal Viewpoint on Probabilistic Programming" 14

Picture: A probabilistic Programming Language for Scene Perception



```
function PROGRAM(MU, PC, EV, VERTEX_ORDER)
# Scene Language: Stochastic Scene Gen
face=Dict();shape = []; texture = [];
for S in ["shape", "texture"]
for p in ["nose", "eyes", "outline", "lips"]
coeff = MvNormal(0,1,1,99)
face[S][p] = MU[S][p]+PC[S][p].*(coeff.*EV[S][p])
end
end
shape=face["shape"][:]; tex=face["texture"][:];
camera = Uniform(-1,1,1,2); light = Uniform(-1,1,1,2)
```

Approximate Renderer

rendered_img= MeshRenderer(shape,tex,light,camera)

Representation Layer

ren_ftrs = getFeatures("CNN_Conv6", rendered_img)

Comparator

#Using Pixel as Summary Statistics
observe(MvNormal(0,0.01), rendered_img-obs_img)
#Using CNN last conv layer as Summary Statistics
observe(MvNormal(0,10), ren_ftrs-obs_cnn)
end

global obs_img = imread("test.png")
global obs_cnn = getFeatures("CNN_Conv6", img)
#Load args from file
TR = trace(PROGRAM, args=[MU, PC, EV, VERTEX_ORDER])
Data-Driven Learning
learn_datadriven_proposals(TR, 100000, "CNN_Conv6")
load_proposals(TR)
Inference
infer(TR, CB, 20, ["DATA-DRIVEN"])
infer(TR, CB, 200, ["ELLIPTICAL"])

Inferring internal affective states with PPLs

Informatics

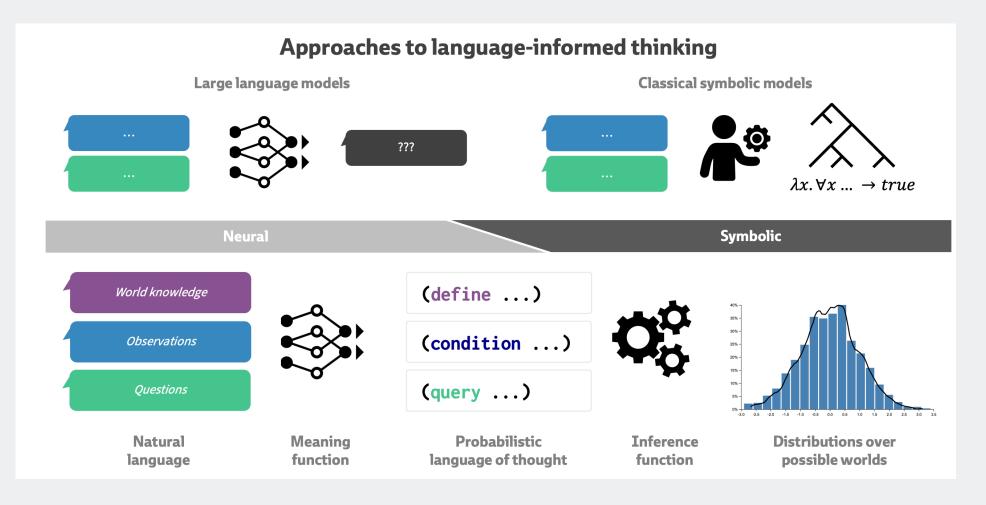
high anger

high disappointment

\$90.923

\$58.734

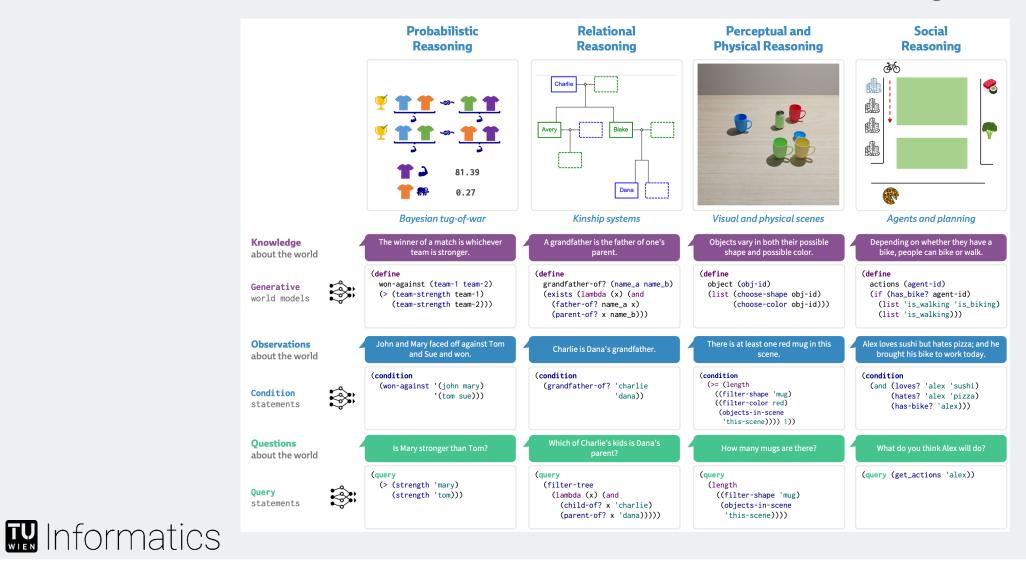
From Word Models to World Models using PPLs



WInformatics

Wong & Grand et al., "From Word Models to World Models: Translating from Natural Language to the Probabilistic Language of Thought"

From Word Models to World Models using PPLs



Probabilistic Programming Languages (PPLs)

Anglican Turing.jl PRISM Infer.NET bayesloop Beanmachine IBAL Lea Church Birch Pyro Edward FACTORIE Analytica Hakaru BayesDB Tuffy greta ProBT NumPyro ProbLog PSI 💽 Dvna Figaro Saul Low-level chimple BLOG Venture RankPL diff-SAT CuPPL Gen WebPPL Troll First-order dimple Gamble Rainier PMTK ProbCog Probabilistic-C TensorFlow Probability PWhile Alchemy Picture pomegranate Blang

Classical PPLs

Have their own modeling Language

Offer a limited set of black-box inference methods

Examples:

Bugs, Stan

Modern PPLs

Are embedded in another language (e.g. Python)

Offer a limited set of black-box inference methods

Examples:

PyMC, Turing.jl

Deep PPLs

Are embedded in another language (e.g. Python)

Often rely on variational inference and underlying machine learning frameworks (e.g., PyTorch, Tensorflow)

Examples:

Edward, Pyro

Flexible PPLs

Are embedded in another language (e.g. Python)

Offer the possibility to implement custom inference methods

Examples: Gen, Beanmachine

Classical PPLs	Modern PPLs	Deep PPLs	Flexible PPLs
BUGS	PyMC	Edward	Gen
Stan	Turing.jl	Pyro	Beanmachine

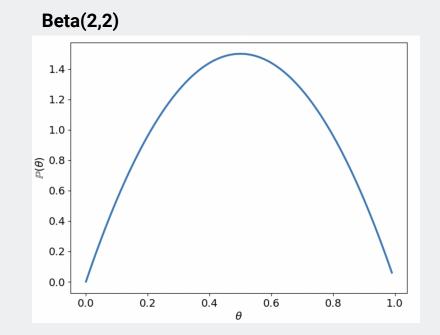
Classical PPLs	Modern PPLs	Deep PPLs	Flexible PPLs
BUGS	PyMC	Edward	Gen
Stan	Turing.jl	Pyro	Beanmachine

Hello, world coin

We Informatics

Given 10 coinflips (observations): Can we infer the bias of a Coin?

Model: $\theta \sim \text{Beta}(2,2)$ // coin bias $y \sim \text{Bernoulli}(\theta)$ // coin flip result



Coin Flip Comparison between different PPLs

Examples can be found at: github.com/ipa-lab/ppl-comparison

PPL Comparison

Mathematical Model:

 $\theta \sim \text{Beta}(2,2)$ // coin bias y ~ Bernoulli(θ) // coin flip result

PPL Comparison - Modeling

end

Gen

```
@gen function my_model(ys::Vector{Bool})
stan_model = """
data {
 int N:
 int y[N];
parameters {
  real theta;
                             end
model {
 theta ~ beta(2, 2);
 for (n in 1:N)
   y[n] ~ bernoulli(theta);
.....
```

Pyro

Stan

```
def simple_model(flips=None):
    a = pyro.param("a", lambda: torch.tensor(2.0))
    b = pyro.param("b", lambda: torch.tensor(2.0))
    theta = pyro.sample("theta", distP.Beta(a,b))
```

```
with pyro.plate("data"):
    return pyro.sample("obs", dist.Bernoulli(theta), obs=flips)
```

theta \sim beta(2, 2)

for (i, y) in enumerate(ys)

@trace(bernoulli(theta), "y-\$i")

Turing.jl

```
@model function coinflip(y)
    theta \sim Beta(2, 2)
    N = length(y)
    for n in 1:N
        y[n] ~ Bernoulli(theta)
    end
end
```

Beanmachine

#Heads rate @bm.random_variable **def** theta(): return dist.Beta(2, 2)

#coin flip @bm.random_variable def y(i: int): **return** dist.Bernoulli(theta())

PPL Comparison - Inference

Turing (representative for black-box inference)

```
chain = sample(coinflip(data), MH(), 1000)
```

Pyro (representative for variational inference)

```
guide = pyro.infer.autoguide.AutoNormal(simple_model)
```

```
adam = pyro.optim.Adam({"lr": 0.02}) # Consider decre
elbo = pyro.infer.Trace_ELBO()
svi = pyro.infer.SVI(simple_model, guide, adam, elbo)
losses = []
for step in range(1000):
```

```
loss = svi.step(y_obs)
losses.append(loss)
if step % 100 == 0:
    print("Elbo loss: {}".format(loss))
```

```
Gen (representative for programmable inference)
function my_inference_program(ys::Vector{Bool}, num_iters::Int)
    # Create a set of constraints fixing the
    # y coordinates to the observed y values
    constraints = choicemap()
    for (i, y) in enumerate(ys)
        constraints["y-$i"] = y
    end
```

```
# Run the model, constrained by `constraints`,
# to get an initial execution trace
(trace, _) = generate(my_model, (ys,), constraints)
```

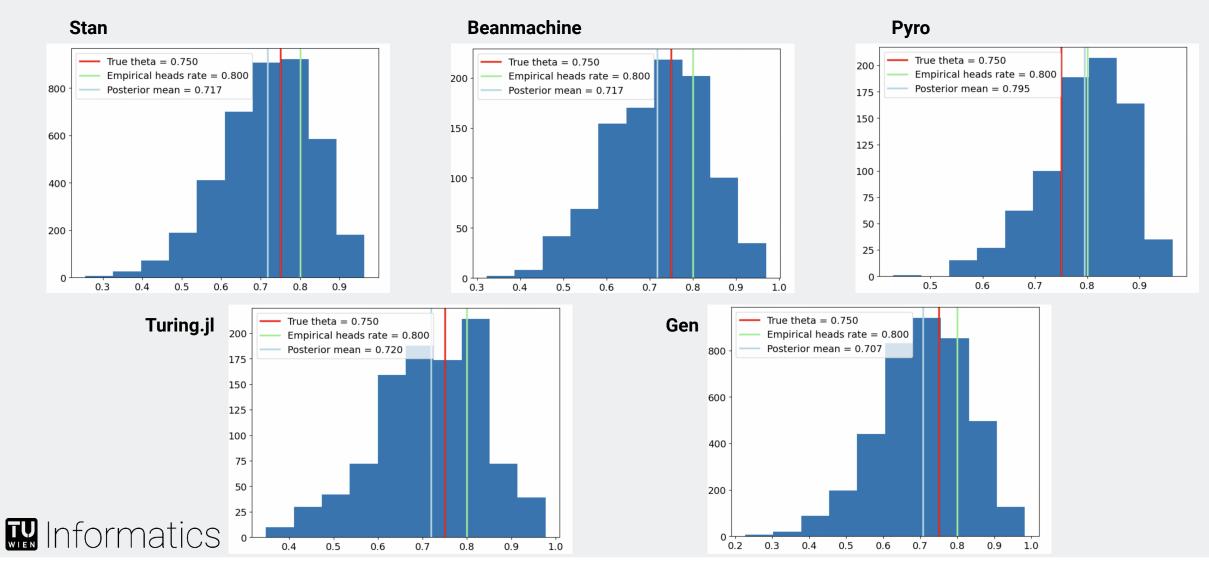
```
xs = Float64[]
```

```
# Iteratively update the slope then the intercept,
# using Gen's metropolis_hastings operator.
for iter=1:num_iters
    (trace, _) = metropolis_hastings(trace, select(:theta))
    push!(xs, trace[:theta])
end
# From the final trace, read out the slope and
# the intercept.
```

```
return xs
```

end

PPL Comparison - Posterior Distributions



Probabilistic Programming and AI: Course Overview

Live lectures in Seminarraum FAV 01 A (Seminarraum 183/2) — **Kick-off in FAV Hörsaal 2** >> not mandatory, but recommended

04.10. 15:00-17:00	 Kick-Off & Lecture 1: Introduction to Probabilistic Programming Probability and Bayesian Statistics Primer FAV Hörsaal 2	 Bayesian Methods for Hackers Probabilistic Programming and Bayesian Inference: Chapter 1 Seeing Theory: Chapters 1,2,3,5 3Blue1Brown Bayes Theorem AI That Understands the World, Using Probabilistic Programming 	18.10. 15:00-17:00	Lecture 3: • Dependent Sampling • Markov Chain Monte Carlo • Metropolis Hastings Algorithm • Hamiltonian Monte Carlo	 Why we use dependent sampling to sample from the posterior An introduction to the Random Walk Metropolis algorithm Paper: Single-Site MH for PPL Handbook of MCMC: Chapter 5: MCMC Using Hamiltonian Dynamics The intuition behind the Hamiltonian Monte Carlo algorithm
04.10.	Release Assignment 1 (A1)				MCMC Interactive Gallery
11.10. 15:00-17:00	 Lecture 2: Bayesian Inference and Generative Modelling Probabilistic Programming Languages Implementation Designs Minimal PPL Implementation Independent Sampling 	 Bayesian Inference Framework Intuition behind Bayesian inference Bayesian posterior sampling Generative Models A Personal Viewpoint on Probabilistic Programming 	25.10. 15:00-17:00	Lecture 4: • Variational Inference • Automatic Differentiation VI • Stochastic VI	 Paper: No-U-Turn Sampler KL Divergence - Clearly explained! Variational Inference + ELBO Intuition Automatic Differentiation and Gradient Descent Paper: Automatic Differentiation Variational Inference Descent Stephentic Variational Inference
11.10.	Release Assignment 2 (A2)				Paper: Stochastic Variational Inference

We Informatics

Probabilistic Programming and AI: Course Overview

Live lectures in Seminarraum FAV 01 A (Seminarraum 183/2) — **Kick-off in FAV Hörsaal 2** >> not mandatory, but recommended

04.10. 15:00-17:00	Kick-Off & Lecture 1:	ethods for Hackers	15:00-17:00 • De • Ma			Sampling ain Monte Carlo Hastings Algorithm	 Why we use dependent sampling to sample from the posterior An introduction to the Random Walk Metropolis algorithm 	
	 Introduction to Probabilistic Programming Probability and Bayesian Statistics Primer FAV Hörsaal 2 	Probabilist Bayesian Ir Seeing The 3Blue1Brov AI That Un Probabilist	06.12. 15:00-17:00	Lecture 5: • Advanc • TBD	ed Inference		Monte Carlo	 Paper: Single-Site MH for PPL Handbook of MCMC: Chapter 5: MCMC Using Hamiltonian Dynamics The intuition behind the Hamiltonian Monte Carlo algorithm MCMC Interactive Gallery Paper: No-U-Turn Sampler
04.10.	Release Assignment 1 (A1)		07.12.	Office Hours	13:15-15:00 (o	nline)		
Implementation DesignsMinimal PPL Implementation	 Bayesian Inference and Generative Modelling Probabilistic Programming Languages 	 Bayesian Ir Intuition be Bayesian p Generative A Personal Programmi 	13.12. 15:00-17:00	Lecture 6: • Probabi • TBD	ilistic Al		ference fferentiation VI I	 KL Divergence - Clearly explained! Variational Inference + ELBO Intuition Automatic Differentiation and Gradient Descent Paper: Automatic Differentiation Variational Inference
	 Minimal PPL Implementation Independent Sampling 		13.12.	A4 Deadline			Paper: Stochastic Variational Inference	
			13.12.	Project Propo	osal Deadline			
11.10.	Release Assignment 2 (A2)		20.12. 15:00-17:00	Assignment [Discussion Ses	sion A3 & A4		
			31.01. 14:00-17:00	Final Project	Presentations			

We Informatics

Probabilistic Programming and AI: Course Overview

40% - 4 Assignments with 2 assignment discussion sessions (online and **mandatory!**) 60% - Group project with final presentation

Assignments:

Assignment 1: Introduction to PPLs Assignment 3: MH Inference Impl. Assignment 2: Minimal PPL implementation Assignment 4: Gradient-based Inference Impl.

Group project: You will submit project proposals (we will provide feedback on feasibility)

Initial ideas:

- Applying probabilistic programming to a non-trivial problem
- Implementing an advanced inference algorithm in our minimal PPL
- Implementing a PPL following a different design principle

Probabilistic Programming and AI: What kind of program can represent thinking?

Structure

Probability

Knowledge

Uncertainty

<pre>@gen function line_model(xs::Vector{Float64}) slope = ({:slope} ~ normal(0, 1))</pre>	Slope and Intercept as Latent Variables (Priors)	Probabilistic
<pre>intercept = ({:intercept} ~ normal(0, 2)) for (i, x) in enumerate(xs)</pre>	Likelihood defined as model over slope and intercept with fixed noise	Modeling as Generative
<pre>({(:y, i)} ~ normal(slope * x + intercept, 0.1)) end return length(xs)</pre>	Observed variable samples explicitly recorded in a trace $\{(:y, i)\}$	Function (Simulator)
end;		<u></u>
<pre>function do_inference(model, xs, ys, amount_of_computation) observations = Gen.choicemap() for (i, y) in enumerate(ys) observations[(:y, i)] = y end</pre>	Observations recalled in inference step and passed to inference procedure	Inference separated
<pre>(trace, _) = Gen.importance_resampling(model, (xs,),</pre>	Approximative inference with importance resampling (can be exchanged with MCMC, HMC, NUTS, etc.)	from modeling
xs = []; ys = [];		
<pre>sample trace = Gen.simulate(line model, (xs,));</pre>		

trace = do_inference(line_model, xs, ys, 100)

You can find assignment 1 (A1) on TUWEL

Remember: Successfully completing A1 until October 17th is mandatory for your final registration