
1

Probabilistic Programming
and Artificial Intelligence

TU Wien, 194.150, VU 6 ECTS

Jürgen Cito
Markus Böck

TU Wien, Austria

Probabilistic Programming and AI: Organization

Registration
Deadline: October 2nd
Drop-date: October 17th (coincides with deadline for A1)

Modality/Grading:
6 Lectures, 4 Assignments, 2 Assignment discussions (mandatory), 1 Group project
Grading: 40% Assignments, 60% projects, no exam

Elective:
066 645 Data Science
066 926 Business Informatics
066 931 Logic and Computation
066 937 Software Engineering & Internet Computing

All information on TISS/TUWEL and website: https://probprog-ai-tuwien.github.io/2023/

3

Probabilistic Programming

• Express statistical assumptions via probability distributions
 Pr(parameters, data) = Pr(parameters) Pr(data | parameters)

• Inference from data (via conditioning)
 Pr(parameters | data = x)

prior likelihoodjoint

posterior

Bayesian statistics

1.Represent probability distributions as formulas programs
that generate samples from possible worlds

2.Build generic algorithms for probabilistic conditioning/inference
using probabilistic programs as representations

Slide adapted from Dan Roy, “A Personal Viewpoint on Probabilistic Programming"

4

Probabilistic Programming and AI: What is thinking?

Slide adapted from Tobias Gerstenberg, "Mental Models as Probabilistic Programs"

How can we describe the
intelligent inferences made in
everyday human reasoning?

How can we engineer
intelligent machines?

mind = computer mental representations =
computer programs

thinking =
running a program

run(program)

Computational theory of mind

5

Probabilistic Programming and AI:
What kind of program can represent thinking?

Tenenbaum, Kemp, Griffiths, & Goodman (2011) How to grow a mind: Statistics, structure, and abstraction. Science

Structure

Knowledge

Probability

Uncertainty

Slide adapted from Tobias Gerstenberg, "Mental Models as Probabilistic Programs"

6

Probabilistic Models: Brief Teaser

μ ~ Normal(0, 10)
σ ~ LogNormal(0, 5)
x ~ Normal(μ, σ)

μ σ

x

Latent Variables

Observed Data

μ ~ Normal(0, 10)
σ ~ LogNormal(0, 5)
x1,...xn ~iid Normal(μ, σ)

μ σ

xn

Latent Variables

Observed Data
(plate notation)N

Where will the ball land?

7

Probabilistic Inference

Run forward

Reason backward
Where did the ball come from?

Slide adapted from Tobias Gerstenberg, "Mental Models as Probabilistic Programs"

8

Why are probabilistic models useful?
- Express prior knowledge about the world
- Incorporate noisy data
- Handling uncertainty

Why are Probabilistic Programming
Languages useful? Expressivity!

Probabilistic Models: Brief Teaser

μ ~ Normal(0, 10)
σ ~ LogNormal(0, 5)
x ~ Normal(μ, σ)

μ σ

x

Latent Variables

Observed Data

9

Probabilistic Programming: Expressivity

Why are PPLs useful? Expressivity!
- Probabilistic modeling and inference as first class citizens of a programming language

- Ability to express rich probabilistic models through stochastic control flow
(beyond Probabilistic Graphical Models and Bayesian Networks)

- Separating modeling from inference

- Enable incorporation of programming language and software engineering advances

10

Separating Probabilistic Modeling and Inference

Represent probability distributions by programs that generate samples (simulators)

Using general purpose algorithms for inference using probabilistic programs as model representations

Probabilistic Model

Inference

11

Simple Probabilistic Program: Bayesian Linear Regression in Gen/Julia

Slope and Intercept as Latent Variables (Priors)

Likelihood defined as model over slope and intercept
with fixed noise

Observed variable samples explicitly recorded in a
trace {(:y, i)}

Probabilistic
Modeling as
Generative
Function

(Simulator)

Observations recalled in inference step and passed to
inference procedure Inference

separated
from

modelingApproximative inference with importance resampling
(can be exchanged with MCMC, HMC, NUTS, etc.)

12

Program Comprehension
(Reasoning about Programs)

Software Evolution
(Reasoning about Change)

Software Visualization
(Reasoning about Large-scale Traces)

Software Testing
(Reasoning about Correctness)

Software Engineering for Probabilistic Programming

Choice of Priors

Choice of
Likelihood

Choice of Inference
Method and Parameters

Choice of Domain-specific
Visualization

SE for PPL Research in our
research group

Feedback Cycle

13

Software Visualization
(Reasoning about Traces)

Support visualizing of generative
worlds and posterior distributions

that are embedded in domain

14

Applications of Probabilistic Programming Languages
Inverse Modeling: Extracting 3D structures from images

Slide adapted from Dan Roy, “A Personal Viewpoint on Probabilistic Programming"

15

Picture: A probabilistic Programming Language for Scene Perception

16

Inferring internal affective states with PPLs

17

From Word Models to World Models using PPLs

Wong & Grand et al., "From Word Models to World Models: Translating from Natural Language to the Probabilistic Language of Thought"

18

From Word Models to World Models using PPLs

Wong & Grand et al., "From Word Models to World Models: Translating from Natural Language to the Probabilistic Language of Thought"

19

Probabilistic Programming Languages (PPLs)

20

PPL Overview

Classical PPLs

Have their own modeling Language

Offer a limited set of black-box inference methods

Examples:
Bugs, Stan

21

PPL Overview

Modern PPLs

Are embedded in another language (e.g. Python)

Offer a limited set of black-box inference methods

Examples:
PyMC, Turing.jl

22

Deep PPLs

Are embedded in another language (e.g. Python)

Often rely on variational inference and underlying machine learning
frameworks (e.g., PyTorch, Tensorflow)

Examples:
Edward, Pyro

PPL Overview

23

PPL Overview

Flexible PPLs

Are embedded in another language (e.g. Python)

Offer the possibility to implement custom inference methods

Examples:
Gen, Beanmachine

24

PPL Overview

Classical PPLs Modern PPLs Deep PPLs Flexible PPLs

BUGS PyMC Edward Gen
Stan Turing.jl Pyro Beanmachine

25

PPL Overview

Classical PPLs Modern PPLs Deep PPLs Flexible PPLs

BUGS PyMC Edward Gen
Stan Turing.jl Pyro Beanmachine

26

Hello, world coin

 Given 10 coinflips (observations): Can we infer the bias of a Coin?

Model:
θ ~ Beta(2,2) // coin bias
y ~ Bernoulli(θ) // coin flip result

Beta(2,2)

27

Coin Flip Comparison between
different PPLs

Examples can be found at:
github.com/ipa-lab/ppl-comparison

28

PPL Comparison

Mathematical Model:

θ ~ Beta(2,2) // coin bias
y ~ Bernoulli(θ) // coin flip result

29

PPL Comparison - Modeling
Stan Gen Turing.jl

Pyro
Beanmachine

30

PPL Comparison - Inference
Turing (representative for black-box inference)

Pyro (representative for variational inference)

Gen (representative for programmable inference)

31

PPL Comparison - Posterior Distributions
Stan Beanmachine Pyro

Turing.jl Gen

Live lectures in Seminarraum FAV 01 A (Seminarraum 183/2) — Kick-off in FAV Hörsaal 2
>> not mandatory, but recommended

Probabilistic Programming and AI: Course Overview

Live lectures in Seminarraum FAV 01 A (Seminarraum 183/2) — Kick-off in FAV Hörsaal 2
>> not mandatory, but recommended

Probabilistic Programming and AI: Course Overview

40% — 4 Assignments with 2 assignment discussion sessions (online and mandatory!)
60% — Group project with final presentation

Assignments:
Assignment 1: Introduction to PPLs Assignment 2: Minimal PPL implementation
Assignment 3: MH Inference Impl. Assignment 4: Gradient-based Inference Impl.

Group project: You will submit project proposals (we will provide feedback on feasibility)

Initial ideas:
• Applying probabilistic programming to a non-trivial problem
• Implementing an advanced inference algorithm in our minimal PPL
• Implementing a PPL following a different design principle

Probabilistic Programming and AI: Course Overview

You can find assignment 1 (A1) on TUWEL

Remember: Successfully completing A1 until October 17th
is mandatory for your final registration

